Suppr超能文献

费城儿童医院 ROP(CHOP ROP)模型在 1 型 ROP 预测中的作用。

Usefulness of Children's Hospital of Philadelphia ROP (CHOP ROP) model in the prediction of type 1 ROP.

机构信息

Department of Ophthalmology, Guru Gobind Singh Medical College, Faridkot, Punjab, India.

Department of Pediatrics, Guru Gobind Singh Medical College, Faridkot, Punjab, India.

出版信息

Indian J Ophthalmol. 2023 Nov;71(11):3473-3477. doi: 10.4103/IJO.IJO_415_23.

Abstract

PURPOSE

Children's Hospital of Philadelphia retinopathy of prematurity (CHOP ROP) model can be used to predict ROP, a leading cause of childhood blindness, using risk factors such as postnatal weight gain, birth weight (BW), and gestation age (GA). The purpose of this study was to determine the usefulness of the CHOP ROP for the prediction of treatable ROP.

METHODS

This was a prospective observational study. Babies <34 weeks of GA, BW <2000 grams, and GA 34-36 weeks with risk factors such as respiratory distress syndrome (RDS) were included; ROP screening, follow-up, and treatment were performed based on national guidelines. The average daily postnatal weight gain was measured, and the CHOP nomogram was plotted. Babies were categorized as high risk or low risk based on the "CHOP" alarm. The sensitivity and specificity of the CHOP ROP for the detection of treatable ROP were determined. In case of poor sensitivity, a new cutoff alarm level was planned using logistic regression analysis.

RESULTS

Of 62 screened infants, 23 infants did not fulfill the criteria of the CHOP algorithm and were excluded. Thus, in the study on 39 infants, the predictive model with an alarm level of 0.014 had 100% specificity and 20% sensitivity. With the "new" alarm level (cutoff) of 0.0003, the CHOP nomogram could detect all the infants who developed treatable ROP, that is, sensitivity increased to 100% but specificity decreased to 10.5%.

CONCLUSION

The CHOP ROP model with a cutoff point (0.014) performed poorly in predicting severe ROP in the study. Thus, there is a need to develop inclusive and more sensitive tailor-made algorithms.

摘要

目的

费城儿童医院早产儿视网膜病变(CHOP ROP)模型可用于预测 ROP,ROP 是儿童失明的主要原因,可使用体重增加、出生体重(BW)和胎龄(GA)等危险因素进行预测。本研究旨在确定 CHOP ROP 对预测可治疗 ROP 的有用性。

方法

这是一项前瞻性观察研究。纳入胎龄<34 周、BW<2000 克且 GA 为 34-36 周且有呼吸窘迫综合征(RDS)等危险因素的婴儿;ROP 筛查、随访和治疗均根据国家指南进行。测量平均每日出生后体重增加量,并绘制 CHOP 预测图。根据“CHOP”报警将婴儿分为高危或低危。确定 CHOP ROP 检测可治疗 ROP 的敏感性和特异性。如果敏感性较差,则计划使用逻辑回归分析制定新的截断报警水平。

结果

在 62 例筛查婴儿中,有 23 例不符合 CHOP 算法标准,被排除在外。因此,在 39 例婴儿的研究中,报警水平为 0.014 的预测模型具有 100%的特异性和 20%的敏感性。使用新的报警水平(截断值)0.0003,CHOP 预测图可以检测到所有发生可治疗 ROP 的婴儿,即敏感性增加到 100%,但特异性降低到 10.5%。

结论

在本研究中,使用截断值(0.014)的 CHOP ROP 模型在预测严重 ROP 方面表现不佳。因此,需要开发包容性更强和更敏感的定制算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4b2/10752303/5db63aa3624b/IJO-71-3473-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验