Suppr超能文献

CHOP产后体重增加、出生体重和胎龄早产儿视网膜病变风险模型。

The CHOP postnatal weight gain, birth weight, and gestational age retinopathy of prematurity risk model.

作者信息

Binenbaum Gil, Ying Gui-Shuang, Quinn Graham E, Huang Jiayan, Dreiseitl Stephan, Antigua Jules, Foroughi Negar, Abbasi Soraya

出版信息

Arch Ophthalmol. 2012 Dec;130(12):1560-5. doi: 10.1001/archophthalmol.2012.2524.

Abstract

OBJECTIVE

To develop a birth weight (BW), gestational age (GA), and postnatal-weight gain retinopathy of prematurity (ROP) prediction model in a cohort of infants meeting current screening guidelines.

METHODS

Multivariate logistic regression was applied retrospectively to data from infants born with BW less than 1501 g or GA of 30 weeks or less at a single Philadelphia hospital between January 1, 2004, and December 31, 2009. In the model, BW, GA, and daily weight gain rate were used repeatedly each week to predict risk of Early Treatment of Retinopathy of Prematurity type 1 or 2 ROP. If risk was above a cut-point level, examinations would be indicated.

RESULTS

Of 524 infants, 20 (4%) had type 1 ROP and received laser treatment; 28 (5%) had type 2 ROP. The model (Children's Hospital of Philadelphia [CHOP]) accurately predicted all infants with type 1 ROP; missed 1 infant with type 2 ROP, who did not require laser treatment; and would have reduced the number of infants requiring examinations by 49%. Raising the cut point to miss one type 1 ROP case would have reduced the need for examinations by 79%. Using daily weight measurements to calculate weight gain rate resulted in slightly higher examination reduction than weekly measurements.

CONCLUSIONS

The BW-GA-weight gain CHOP ROP model demonstrated accurate ROP risk assessment and a large reduction in the number of ROP examinations compared with current screening guidelines. As a simple logistic equation, it can be calculated by hand or represented as a nomogram for easy clinical use. However, larger studies are needed to achieve a highly precise estimate of sensitivity prior to clinical application.

摘要

目的

在符合当前筛查指南的婴儿队列中,建立一个基于出生体重(BW)、胎龄(GA)和出生后体重增长的早产儿视网膜病变(ROP)预测模型。

方法

对2004年1月1日至2009年12月31日期间在费城一家医院出生的BW小于1501 g或GA为30周或更小的婴儿数据进行回顾性多变量逻辑回归分析。在该模型中,每周重复使用BW、GA和每日体重增加率来预测1型或2型早产儿视网膜病变早期治疗的风险。如果风险高于切点水平,则需进行检查。

结果

在524名婴儿中,20名(4%)患有1型ROP并接受了激光治疗;28名(5%)患有2型ROP。该模型(费城儿童医院[CHOP])准确预测了所有1型ROP婴儿;漏诊了1名2型ROP婴儿,该婴儿无需激光治疗;并且将需要检查的婴儿数量减少了49%。将切点提高以漏诊1例1型ROP病例,将使检查需求减少79%。使用每日体重测量来计算体重增加率,比每周测量导致的检查减少略多。

结论

BW-GA-体重增加的CHOP ROP模型显示出准确的ROP风险评估,与当前筛查指南相比,ROP检查数量大幅减少。作为一个简单的逻辑方程,它可以手动计算或表示为列线图以便于临床使用。然而,在临床应用之前,需要更大规模的研究来实现对敏感性的高度精确估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验