Suppr超能文献

原生动物游动孢子形成真菌中的视紫质环化酶多样性。

Diversity of rhodopsin cyclases in zoospore-forming fungi.

机构信息

Institute of Biology, Department of Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin 10115, Germany.

Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany.

出版信息

Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2310600120. doi: 10.1073/pnas.2310600120. Epub 2023 Oct 23.

Abstract

Light perception for orientation in zoospore-forming fungi is linked to homo- or heterodimeric rhodopsin-guanylyl cyclases (RGCs). Heterodimeric RGCs, first identified in the chytrid , consist of an unusual near-infrared absorbing highly fluorescent sensitizer neorhodopsin (NeoR) that is paired with a visual light-absorbing rhodopsin responsible for enzyme activation. Here, we present a comprehensive analysis of the distribution of RGC genes in early-branching fungi using currently available genetic data. Among the characterized RGCs, we identified red-sensitive homodimeric RGC variants with maximal light activation close to 600 nm, which allow for red-light control of GTP to cGMP conversion in mammalian cells. Heterodimeric RGC complexes have evolved due to a single gene duplication within the branching of Chytridiales and show a spectral range for maximal light activation between 480 to 600 nm. In contrast, the spectral sensitivity of NeoRs is reaching into the near-infrared range with maximal absorption between 641 and 721 nm, setting the low energy spectral edge of rhodopsins so far. Based on natural NeoR variants and mutational studies, we reevaluated the role of the counterion-triad proposed to cause the extreme redshift. With the help of chimera constructs, we disclose that the cyclase domain is crucial for functioning as homo- or heterodimers, which enables the adaptation of the spectral sensitivity by modular exchange of the photosensor. The extreme spectral plasticity of retinal chromophores in native photoreceptors provides broad perspectives on the achievable spectral adaptation for rhodopsin-based molecular tools ranging from UVB into the near-infrared.

摘要

在形成游动孢子的真菌中,光感知与同型或异型二聚体视紫红质-鸟苷酸环化酶(RGC)有关。异型二聚体 RGC 首先在壶菌中被鉴定出来,由一种不寻常的近红外吸收高荧光敏化剂 neo 视紫红质(NeoR)组成,它与负责酶激活的可见光吸收视紫红质配对。在这里,我们使用当前可用的遗传数据对早期分支真菌中的 RGC 基因分布进行了全面分析。在所鉴定的 RGC 中,我们发现了具有最大光激活接近 600nm 的红色敏感同型二聚体 RGC 变体,这使得在哺乳动物细胞中可以用光来控制 GTP 转化为 cGMP。异型二聚体 RGC 复合物是由于 Chytridiales 分支内的单个基因复制而进化而来的,其最大光激活光谱范围在 480 到 600nm 之间。相比之下,NeoR 的光谱灵敏度在近红外范围内达到最大吸收在 641nm 到 721nm 之间,这是迄今为止视紫红质的低能量光谱边缘。基于天然 NeoR 变体和突变研究,我们重新评估了引起极端红移的抗衡离子三联体的作用。借助嵌合体构建,我们揭示了环化酶结构域对于作为同型或异型二聚体的功能至关重要,这使得通过模块交换光传感器来适应光谱灵敏度成为可能。天然光感受器中视黄醛发色团的极端光谱可塑性为基于视紫红质的分子工具提供了广泛的视角,这些工具的光谱适应性范围从 UVB 到近红外。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac03/10622942/85f88bdec1ed/pnas.2310600120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验