Suppr超能文献

使用奇异值分解分析药物/β-环糊精混合物:来自X射线粉末衍射图谱的见解

Using singular value decomposition to analyze drug/β-cyclodextrin mixtures: insights from X-ray powder diffraction patterns.

作者信息

Hasegawa Kanji, Goto Satoru, Tsunoda Chihiro, Kuroda Chihiro, Okumura Yuta, Hiroshige Ryosuke, Wada-Hirai Ayako, Shimizu Shota, Yokoyama Hideshi, Tsuchida Tomohiro

机构信息

Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.

出版信息

Phys Chem Chem Phys. 2023 Nov 1;25(42):29266-29282. doi: 10.1039/d3cp02737f.

Abstract

The article discusses the use of mathematical models and linear algebra to understand the crystalline structures and interconversion pathways of drug complexes with β-cyclodextrin (β-CD). It involved the preparation and analysis of mixtures of indomethacin, diclofenac, famotidine, and cimetidine with β-CD using techniques such as differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and proton nuclear magnetic resonance (H-NMR). Singular value decomposition (SVD) analysis is used to identify the presence of different polymorphs in the mixtures of these drugs and β-CD, determine interconversion pathways, and distinguish between different forms. In general, linear algebra or artificial intelligence (AI) is used to approximate the contribution of distinguishable entities to various phenomena. We expected linear algebra to completely reveal all eight entities present in the diffractogram dataset. However, after performing the SVD procedure, we found that only six independent basis functions were extracted, and the entities of the INM α-form and the CIM B-form were not included. It is considered that this is due to that data processing is limited to revealing only six or seven independent factors, as it is a small world. The authors caution that these may not always reproduce or approach reality in complicated real-world situations.

摘要

本文讨论了使用数学模型和线性代数来理解药物与β-环糊精(β-CD)复合物的晶体结构和相互转化途径。研究涉及使用差示扫描量热法(DSC)、X射线粉末衍射(XRPD)和质子核磁共振(H-NMR)等技术制备和分析吲哚美辛、双氯芬酸、法莫替丁和西咪替丁与β-CD的混合物。奇异值分解(SVD)分析用于识别这些药物与β-CD混合物中不同多晶型物的存在,确定相互转化途径,并区分不同形式。一般来说,线性代数或人工智能(AI)用于近似可区分实体对各种现象的贡献。我们期望线性代数能完全揭示衍射图谱数据集中存在的所有八个实体。然而,在执行SVD程序后,我们发现仅提取了六个独立的基函数,吲哚美辛α型和西咪替丁B型的实体未被包含。据认为,这是因为数据处理仅限于揭示六七个独立因素,毕竟这是一个小范围的情况。作者警告说,在复杂的现实世界情况下,这些可能并不总是能重现或接近实际情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验