Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
Evotec SE, Hamburg, Germany.
Eur J Neurosci. 2024 Mar;59(6):1227-1241. doi: 10.1111/ejn.16166. Epub 2023 Oct 24.
The dendritic arbour of striatal projection neurons (SPNs) is the primary anatomical site where dopamine and glutamate inputs to the basal ganglia functionally interact to control movement. These dendritic arbourisations undergo atrophic changes in Parkinson's disease. A reduction in the dendritic complexity of SPNs is found also in animal models with severe striatal dopamine denervation. Using 6-hydroxydopamine (6-OHDA) lesions of the medial forebrain bundle as a model, we set out to compare morphological and electrophysiological properties of SPNs at an early versus a chronic stage of dopaminergic degeneration. Ex vivo recordings were performed in transgenic mice where SPNs forming the direct pathway (dSPNs) express a fluorescent reporter protein. At both the time points studied (5 and 28 days following 6-OHDA lesion), there was a complete loss of dopaminergic fibres through the dorsolateral striatum. A reduction in dSPN dendritic complexity and spine density was manifest at 28, but not 5 days post-lesion. At the late time point, dSPN also exhibited a marked increase in intrinsic excitability (reduced rheobase current, increased input resistance, more evoked action potentials in response to depolarising currents), which was not present at 5 days. The increase in neuronal excitability was accompanied by a marked reduction in inward-rectifying potassium (Kir) currents (which dampen the SPN response to depolarising stimuli). Our results show that dSPNs undergo delayed coordinate changes in dendritic morphology, intrinsic excitability and Kir conductance following dopamine denervation. These changes are predicted to interfere with the dSPN capacity to produce a normal movement-related output.
纹状体投射神经元 (SPN) 的树突棘是多巴胺和谷氨酸输入基底神经节的主要解剖部位,这些输入在控制运动方面具有功能性相互作用。这些树突棘在帕金森病中发生萎缩性变化。在严重纹状体多巴胺去神经的动物模型中也发现 SPN 的树突复杂性降低。我们使用内侧前脑束 6-羟多巴胺 (6-OHDA) 损伤作为模型,旨在比较多巴胺能退化的早期和慢性阶段 SPN 的形态和电生理特性。在表达形成直接通路 (dSPN) 的 SPN 的转基因小鼠中进行离体记录。在研究的两个时间点(6-OHDA 损伤后 5 和 28 天),通过背外侧纹状体的多巴胺能纤维完全丧失。dSPN 树突棘复杂性和棘密度的减少在 28 天,但不在 5 天出现。在晚期,dSPN 还表现出明显的内在兴奋性增加(降低的阈值电流、增加的输入电阻、对去极化电流的反应中更多的诱发动作电位),而在 5 天则不存在。神经元兴奋性的增加伴随着内向整流钾 (Kir) 电流的明显减少(抑制 SPN 对去极化刺激的反应)。我们的结果表明,dSPN 在多巴胺能去神经后经历了树突形态、内在兴奋性和 Kir 电导的延迟协调变化。这些变化预计会干扰 dSPN 产生正常运动相关输出的能力。