Suppr超能文献

一种应用于肺炎管理的临床决策支持的数据驱动框架。

A data-driven framework for clinical decision support applied to pneumonia management.

作者信息

Free Robert C, Lozano Rojas Daniel, Richardson Matthew, Skeemer Julie, Small Leanne, Haldar Pranabashis, Woltmann Gerrit

机构信息

School of Computing and Mathematical Sciences, University of Leicester, Leicester, United Kingdom.

Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom.

出版信息

Front Digit Health. 2023 Oct 9;5:1237146. doi: 10.3389/fdgth.2023.1237146. eCollection 2023.

Abstract

Despite their long history, it can still be difficult to embed clinical decision support into existing health information systems, particularly if they utilise machine learning and artificial intelligence models. Moreover, when such tools are made available to healthcare workers, it is important that the users can understand and visualise the reasons for the decision support predictions. Plausibility can be hard to achieve for complex pathways and models and perceived "black-box" functionality often leads to a lack of trust. Here, we describe and evaluate a data-driven framework which moderates some of these issues and demonstrate its applicability to the in-hospital management of community acquired pneumonia, an acute respiratory disease which is a leading cause of in-hospital mortality world-wide. We use the framework to develop and test a clinical decision support tool based on local guideline aligned management of the disease and show how it could be used to effectively prioritise patients using retrospective analysis. Furthermore, we show how this tool can be embedded into a prototype clinical system for disease management by integrating metrics and visualisations. This will assist decision makers to examine complex patient journeys, risk scores and predictions from embedded machine learning and artificial intelligence models. Our results show the potential of this approach for developing, testing and evaluating workflow based clinical decision support tools which include complex models and embedding them into clinical systems.

摘要

尽管临床决策支持有着悠久的历史,但将其嵌入现有的健康信息系统仍然可能很困难,特别是当这些系统使用机器学习和人工智能模型时。此外,当向医护人员提供此类工具时,用户能够理解并可视化决策支持预测的原因非常重要。对于复杂的路径和模型而言,合理性可能难以实现,而且感知到的“黑箱”功能往往会导致信任缺失。在此,我们描述并评估了一个数据驱动的框架,该框架缓解了其中一些问题,并展示了其在社区获得性肺炎院内管理中的适用性,社区获得性肺炎是一种急性呼吸道疾病,是全球院内死亡的主要原因。我们使用该框架开发并测试了一个基于该疾病的本地指南对齐管理的临床决策支持工具,并展示了如何通过回顾性分析有效地对患者进行优先级排序。此外,我们展示了如何通过整合指标和可视化将该工具嵌入到一个用于疾病管理的临床系统原型中。这将帮助决策者检查复杂的患者病程、风险评分以及来自嵌入式机器学习和人工智能模型的预测。我们的结果显示了这种方法在开发、测试和评估基于工作流程的临床决策支持工具方面的潜力,这些工具包括复杂模型并将其嵌入临床系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2751/10591306/afff14fd135b/fdgth-05-1237146-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验