Microsoft Research, Herzeliya, Israel.
EverythingALS, Seattle, Washington, USA.
Muscle Nerve. 2024 Jan;69(1):40-47. doi: 10.1002/mus.27991. Epub 2023 Oct 25.
INTRODUCTION/AIMS: Amyotrophic lateral sclerosis (ALS), a motor neuron disease, remains a clinical diagnosis with an average time from onset of symptoms to diagnosis of about 1 year. Herein we examine the possibility that interactions with an internet search engine can identify people with ALS.
We identified 285 anonymous Bing users whose queries indicated that they had been diagnosed with ALS and matched them to: (1) 3276 control users; and (2) 1814 users whose searches indicated they had ALS disease mimics. We tested whether the ALS group could be distinguished from controls and disease mimics based on search engine query data. Finally, we conducted a prospective validation from participants who provided access to their Bing search data.
The model distinguished between the ALS group and controls with an area under the curve (AUC) of 0.81. Model scores for the ALS group differed from the disease mimics group (rank sum test, p < .05 with Bonferroni correction). Mild cognitive impairment could not be distinguished from ALS (p > .05). In the prospective analysis, the model reached an AUC of 0.74.
Our results suggest that interactions with search engines should be further studied to understand the potential to act as a tool to assist in screening for ALS and to reduce diagnostic delay.
简介/目的:肌萎缩侧索硬化症(ALS)是一种运动神经元疾病,目前仍然是一种临床诊断,从症状出现到确诊的平均时间约为 1 年。在此,我们研究了与互联网搜索引擎的交互是否可以识别出 ALS 患者的可能性。
我们确定了 285 名匿名 Bing 用户,他们的查询表明他们已被诊断为 ALS,并将他们与:(1)3276 名对照组用户;(2)1814 名搜索表明他们患有 ALS 疾病模拟者的用户进行匹配。我们测试了基于搜索引擎查询数据,ALS 组是否可以与对照组和疾病模拟者区分开来。最后,我们对提供 Bing 搜索数据访问权限的参与者进行了前瞻性验证。
该模型在区分 ALS 组和对照组方面的曲线下面积(AUC)为 0.81。ALS 组的模型得分与疾病模拟组不同(秩和检验,Bonferroni 校正后 p < 0.05)。轻度认知障碍无法与 ALS 区分(p > 0.05)。在前瞻性分析中,该模型的 AUC 达到 0.74。
我们的结果表明,应进一步研究与搜索引擎的交互,以了解其作为辅助筛选 ALS 和减少诊断延迟的工具的潜力。