Suppr超能文献

在气-水和脂-水界面,pH 值如何影响疏水性和亲水性纳米颗粒存在下的人血清蛋白在界面的吸附?

How Does pH Affect the Adsorption of Human Serum Protein in the Presence of Hydrophobic and Hydrophilic Nanoparticles at Air-Water and Lipid-Water Interfaces?

机构信息

Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.

出版信息

Langmuir. 2023 Nov 7;39(44):15487-15498. doi: 10.1021/acs.langmuir.3c01755. Epub 2023 Oct 25.

Abstract

This study investigates interaction between hydrophilic (11-mercaptoundecanoic acid (MUA)) and hydrophobic (1-undecanethiol (UDT)) gold nanoparticles (GNPs) with human serum albumin (HSA) protein on air-water and lipid-water interfaces at pH 3 and 7. Vibrational sum frequency generation (VSFG) spectroscopy is used to analyze changes in the intensity of interfacial water molecules and the C-H group of the protein. At the air-water interface, the hydrophobic interaction between the HSA protein and hydrophobic GNPs at pH 3 leads to their accumulation at the interface, resulting in an increased C-H intensity of the protein with a slight decrease in water intensity. Whereas, at pH 7, where the negative charge of the protein results in the reduced surface activity of the HSA compared to pH 3, the interaction between alkyl chain of the hydrophobic GNPs and alkyl group of the protein results in the adsorption of the protein-capped GNPs at the interface. This leads to an increased intensity of the C-H group of protein and water molecules. However, negatively charged hydrophilic GNPs do not induce significant changes in the interfacial water structure or the C-H group of the protein due to the electrostatic force of repulsion with the negatively charged HSA at pH 7. In contrast, at the lipid-water interface, both hydrophobic and hydrophilic GNPs interact with HSA protein, causing disordering of interfacial water molecules at pH 3 and ordering at pH 7. Interestingly, similar behavior of the protein with both types of GNPs results in comparable ordering/disordering at the interface depending on the pH of solution. Furthermore, the VSFG results obtained with the deuterated lipid suggest that changes in ordering and disorder occur due to increased protein adsorption in the presence of GNPs, causing alterations in the membrane structure. These findings give a better understanding of the mechanisms that govern protein-nanoparticle interaction and their consequential effects on the structure, function, and behavior of molecules at the biological membrane interface, which is crucial for developing safe and effective nanoparticle-based therapeutics.

摘要

本研究调查了在 pH 值为 3 和 7 时,亲水(十一巯基十一烷酸(MUA))和疏水(十一硫醇(UDT))金纳米粒子(GNPs)与牛血清白蛋白(HSA)蛋白质在气-水和脂-水界面上的相互作用。振动和频产生(VSFG)光谱用于分析界面水分子和蛋白质的 C-H 基团强度的变化。在气-水界面上,在 pH 值为 3 时,HSA 蛋白质与疏水 GNPs 之间的疏水相互作用导致它们在界面上聚集,导致蛋白质的 C-H 强度略有增加,而水强度略有降低。然而,在 pH 值为 7 时,由于蛋白质的负电荷导致 HSA 的表面活性降低,与蛋白质的疏水性 GNPs 的烷基链与蛋白质的烷基基团之间的相互作用导致带有蛋白质的 GNPs 在界面上吸附。这导致蛋白质的 C-H 基团和水分子的强度增加。然而,由于带负电荷的 HSA 与带负电荷的亲水 GNPs 之间的静电力排斥,带负电荷的亲水 GNPs 不会导致界面水分子结构或蛋白质的 C-H 基团发生显著变化。相比之下,在脂-水界面上,疏水和亲水 GNPs 都与 HSA 蛋白质相互作用,导致在 pH 值为 3 时界面水分子无序,在 pH 值为 7 时有序。有趣的是,由于在 GNPs 存在下蛋白质吸附的增加,导致界面处有序/无序的相似行为,这取决于溶液的 pH 值,从而导致类似的蛋白质与两种类型的 GNPs 的行为。此外,用氘代脂质获得的 VSFG 结果表明,由于 GNPs 的存在导致蛋白质吸附增加,从而导致膜结构发生变化,从而导致有序和无序状态发生变化。这些发现使我们更好地了解控制蛋白质-纳米粒子相互作用的机制及其对生物膜界面处分子的结构、功能和行为的影响,这对于开发安全有效的基于纳米粒子的治疗方法至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验