Suppr超能文献

基于特征提取算法和基于注意力的双向门控循环单元网络的学生学习表现预测。

Students learning performance prediction based on feature extraction algorithm and attention-based bidirectional gated recurrent unit network.

机构信息

Institute of Vocational Education, Chengdu Aeronautic Polytechnic, Chengdu, Asia, China.

Faculty of Education, Beijing Normal University, Beijing, Asia, China.

出版信息

PLoS One. 2023 Oct 25;18(10):e0286156. doi: 10.1371/journal.pone.0286156. eCollection 2023.

Abstract

With the development of information technology construction in schools, predicting student grades has become a hot area of application in current educational research. Using data mining to analyze the influencing factors of students' performance and predict their grades can help students identify their shortcomings, optimize teachers' teaching methods and enable parents to guide their children's progress. However, there are no models that can achieve satisfactory predictions for education-related public datasets, and most of these weakly correlated factors in the datasets can still adversely affect the predictive effect of the model. To solve this issue and provide effective policy recommendations for the modernization of education, this paper seeks to find the best grade prediction model based on data mining. Firstly, the study uses the Factor Analyze (FA) model to extract features from the original data and achieve dimension reduction. Then, the Bidirectional Gate Recurrent Unit (BiGRU) model and attention mechanism are utilized to predict grades. Lastly, Comparing the prediction results of ablation experiments and other single models, such as linear regression (LR), back propagation neural network (BP), random forest (RF), and Gate Recurrent Unit (GRU), the FA-BiGRU-attention model achieves the best prediction effect and performs equally well in different multi-step predictions. Previously, problems with students' grades were only detected when they had already appeared. However, the methods presented in this paper enable the prediction of students' learning in advance and the identification of factors affecting their grades. Therefore, this study has great potential to provide data support for the improvement of educational programs, transform the traditional education industry, and ensure the sustainable development of national talents.

摘要

随着学校信息化建设的发展,预测学生成绩已经成为当前教育研究中的一个热门应用领域。利用数据挖掘分析学生成绩的影响因素,并预测他们的成绩,可以帮助学生发现自己的不足,优化教师的教学方法,使家长能够指导孩子的进步。然而,目前还没有模型可以对教育相关公共数据集进行令人满意的预测,而且这些数据集中的大多数弱相关因素仍然会对模型的预测效果产生不利影响。为了解决这个问题,并为教育现代化提供有效的政策建议,本文旨在寻求基于数据挖掘的最佳成绩预测模型。首先,研究使用因子分析(FA)模型从原始数据中提取特征并实现降维。然后,利用双向门控循环单元(BiGRU)模型和注意力机制来预测成绩。最后,通过比较消融实验和其他单一模型(如线性回归(LR)、反向传播神经网络(BP)、随机森林(RF)和门控循环单元(GRU))的预测结果,FA-BiGRU-attention 模型取得了最佳的预测效果,并且在不同的多步预测中表现相当。在此之前,学生成绩的问题只有在已经出现时才会被发现。然而,本文提出的方法能够提前预测学生的学习情况,并识别影响他们成绩的因素。因此,本研究有很大的潜力为改进教育计划、改造传统教育产业以及确保国家人才的可持续发展提供数据支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5d7/10599562/80dda686cd6a/pone.0286156.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验