Suppr超能文献

基于纸基印刷电极的毒死蜱适体传感器的研制。

Development of aptasensor for chlorpyrifos detection using paper-based screen-printed electrode.

机构信息

Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi, 110067, India; Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.

Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi, 110067, India.

出版信息

Environ Res. 2024 Jan 1;240(Pt 2):117478. doi: 10.1016/j.envres.2023.117478. Epub 2023 Oct 23.

Abstract

Novel Carbon quantum dots-graphite composite ink-based Screen-printed electrodes (CQDs/SPEs) were used to assemble a highly sensitive electrochemical aptasensor against chlorpyrifos (CPF). The aptasensor showed a broad linear range from 1 pM (0.445 ng/ml) to 500 nM (0.22 mg/ml) with a detection limit (LOD) 0.834 pM (0.37 ng/ml); sensitivity 21.39 μA pM cm and with good linearity of R = 0.973. Moreover, the aptasensor's showed better selectivity among few other pesticides. Further, the aptasensor electrode showed high stability for five months when stored at 4 °C. In the final step, the aptasensor's ability to identify CPF in real samples was evaluated on spiked potato (Solanum tuberosum) extract samples. Potato extract spiked with CPF in the electrochemical aptasensing platform showed excellent linearity of R = 0.981. The developed aptasensor showed good response to without spiked potato extract with increasing volumes. Hence, the developed aptasensor demonstrated reasonable applicability in real food and agriculture samples.

摘要

新型碳量子点-石墨复合油墨基丝网印刷电极(CQDs/SPEs)被用于组装针对毒死蜱(CPF)的高灵敏电化学适体传感器。该适体传感器显示出从 1 pM(0.445ng/ml)到 500 nM(0.22 mg/ml)的宽线性范围,检测限(LOD)为 0.834 pM(0.37ng/ml);灵敏度为 21.39 μA pM cm,线性度良好,R 为 0.973。此外,该适体传感器在几种其他农药中表现出更好的选择性。此外,该适体传感器电极在 4°C 下储存五个月时表现出高稳定性。在最后一步中,评估了电化学适体传感平台在实际马铃薯(Solanum tuberosum)提取物样品中对 CPF 的识别能力。在电化学适体传感平台中,用 CPF 对马铃薯提取物进行了加标,显示出 R = 0.981 的良好线性。所开发的适体传感器对未加标马铃薯提取物的响应随体积的增加而增加。因此,所开发的适体传感器在实际食品和农业样品中具有合理的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验