Department of Pharmacology, University of Virginia, Charlottesville, Virginia.
Department of Pharmacology, University of Virginia, Charlottesville, Virginia.
Cell Mol Gastroenterol Hepatol. 2024;17(2):237-249. doi: 10.1016/j.jcmgh.2023.10.009. Epub 2023 Oct 24.
BACKGROUND & AIMS: Transcription factors regulate gene expression that orchestrates liver physiology. Many bind at distal enhancers and chromatin looping is required to activate their targets. Chromatin architecture has been linked to essential functions of the liver, including metabolism and sexually dimorphic gene expression. We have previously shown that pioneer factor Foxa2 opens chromatin for binding of nuclear receptors farnesoid X receptor (FXR) and liver X receptor-α during acute ligand activation. FXR is activated by bile acids and deletion of Foxa2 in the liver results in intrahepatic cholestasis. We hypothesized that Foxa2 also enables chromatin conformational changes during ligand activation and performed genome-wide studies to test this hypothesis.
We performed Foxa2 HiChIP (Hi-C and ChIP) to assess Foxa2-dependent long-range interactions in mouse livers treated with either vehicle control or FXR agonist GW4064.
HiChIP contact analysis shows that global chromatin interactions are dramatically increased during FXR activation. Ligand-treated livers exhibit extensive redistribution of topological associated domains and substantial increase in Foxa2-anchored loops, suggesting Foxa2 is involved in dynamic chromatin conformational changes. We demonstrate that chromatin conformation, including genome-wide interactions, topological associated domains, and intrachromosomal and interchromosomal Foxa2-anchored loops, drastically changes on addition of FXR agonist. Additional Foxa2 binding in ligand-activated state leads to formation of Foxa2-anchored loops, leading to distal interactions and activation of gene expression of FXR targets.
Ligand activation of FXR, and likely of related receptors, requires global changes in chromatin architecture. We determine a novel role for Foxa2 in enabling these conformational changes, extending its function in bile acid metabolism.
转录因子调节基因表达,协调肝脏生理功能。许多转录因子结合在远端增强子上,需要染色质环化才能激活其靶标。染色质结构与肝脏的基本功能有关,包括代谢和性别二态性基因表达。我们之前的研究表明,先驱因子 Foxa2 在急性配体激活时打开染色质,使核受体法尼醇 X 受体(FXR)和肝 X 受体-α结合。FXR 被胆汁酸激活,肝脏中 Foxa2 的缺失导致肝内胆汁淤积。我们假设 Foxa2 也能在配体激活过程中实现染色质构象变化,并进行了全基因组研究来验证这一假设。
我们进行了 Foxa2 HiChIP(Hi-C 和 ChIP)实验,以评估用载体对照或 FXR 激动剂 GW4064 处理的小鼠肝脏中 Foxa2 依赖性长程相互作用。
HiChIP 接触分析表明,FXR 激活时全局染色质相互作用显著增加。配体处理的肝脏表现出拓扑相关结构域的广泛重分布和 Foxa2 锚定环的大量增加,表明 Foxa2 参与动态染色质构象变化。我们证明了染色质构象,包括全基因组相互作用、拓扑相关结构域以及染色体内和染色体间的 Foxa2 锚定环,在添加 FXR 激动剂后发生剧烈变化。在配体激活状态下增加的额外 Foxa2 结合导致 Foxa2 锚定环的形成,导致远端相互作用和 FXR 靶基因的表达激活。
FXR 配体的激活,以及可能相关受体的激活,需要染色质结构的全局变化。我们确定了 Foxa2 在实现这些构象变化中的新作用,扩展了它在胆汁酸代谢中的功能。