Department of Civil Engineering, Government College of Technology, Coimbatore, India.
Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India.
Sci Total Environ. 2024 Jan 10;907:167896. doi: 10.1016/j.scitotenv.2023.167896. Epub 2023 Oct 23.
The growing concern over the presence of pollutants like Bisphenol A (BPA) in water sources has led to the growth of novel treatment technologies for its removal. This research work investigates the development of a novel biochar-metal oxide nanocomposite derived from tannery sludge and Zinc oxide (ZnO) nanoparticles for the photodegradation of BPA. The biochar was obtained by pyrolysis process, followed by impregnation of ZnO nanoparticles using a hydrothermal technique. The critical properties of as-prepared nanocomposite were evaluated by FT-IR, BET surface area, XRD, FE-SEM, HR-TEM, XPS, PL, EPR, and Raman Spectroscopy. In addition, the photocatalytic activity of nanocomposites was evaluated by measuring the degradation of BPA in visible light irradiation. The outcomes revealed that ZnO-loaded chemically activated biochar exhibited higher photocatalytic activity for the degradation of BPA than the pristine and non-chemically activated biochar. At pH 5, 0.2 g/L of photocatalyst dosage, 20 ppm of initial pollutant concentration, and 150 min of contact time, the maximum degradation efficiency of BPA was observed as 94.50 %. Also, nanocomposites showed good stability and reusability, with only a slight decrease in photocatalytic activity after multiple cycles of use. More importantly, the degradation mechanisms of BPA using as-prepared nanocomposites were analyzed in detail, indicating that the observed photocatalytic activity could be attributed to the synergistic effect between the biochar and ZnO, which provided a large surface area for the adsorption of BPA and promoted the generation of reactive oxygen species for its degradation. Overall, this study highlighted the potential of using nanocomposites from tannery sludge-derived biochar and ZnO nanoparticles for the degradation of BPA from polluted water sources using a photocatalytic process toward the dual environmental benefits.
对污染物(如双酚 A(BPA))在水源中存在的日益关注,促使人们开发了新型的去除技术。本研究工作开发了一种新型的生物炭-金属氧化物纳米复合材料,该复合材料由制革污泥和氧化锌(ZnO)纳米粒子衍生而来,用于 BPA 的光降解。生物炭通过热解过程获得,然后使用水热技术浸渍 ZnO 纳米粒子。通过傅里叶变换红外光谱(FT-IR)、BET 比表面积、X 射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、高分辨率透射电子显微镜(HR-TEM)、X 射线光电子能谱(XPS)、光致发光(PL)、电子顺磁共振(EPR)和拉曼光谱对制备的纳米复合材料的关键性质进行了评估。此外,通过测量可见光照射下 BPA 的降解来评估纳米复合材料的光催化活性。结果表明,与原始和非化学激活生物炭相比,负载 ZnO 的化学激活生物炭具有更高的 BPA 光降解活性。在 pH 5、0.2 g/L 催化剂用量、20 ppm 初始污染物浓度和 150 min 接触时间下,BPA 的最大降解效率为 94.50%。此外,纳米复合材料表现出良好的稳定性和可重复使用性,经过多次使用后,光催化活性仅略有下降。更重要的是,详细分析了使用制备的纳米复合材料降解 BPA 的降解机制,表明观察到的光催化活性可归因于生物炭和 ZnO 之间的协同效应,这为 BPA 的吸附提供了较大的表面积,并促进了用于其降解的活性氧物种的生成。总体而言,本研究强调了使用制革污泥衍生的生物炭和 ZnO 纳米粒子的纳米复合材料在光催化过程中从受污染水源中降解 BPA 的潜力,以实现双重环境效益。