Suppr超能文献

[基于心电图的心肌梗死智能辅助诊断方法综述]

[A review on intelligent auxiliary diagnosis methods based on electrocardiograms for myocardial infarction].

作者信息

Han Chuang, Que Wenge, Wang Zhizhong, Wang Songwei, Li Yanting, Shi Li

机构信息

School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, P. R. China.

Department of Automation, Tsinghua university, Beijing 100000, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Oct 25;40(5):1019-1026. doi: 10.7507/1001-5515.202212010.

Abstract

Myocardial infarction (MI) has the characteristics of high mortality rate, strong suddenness and invisibility. There are problems such as the delayed diagnosis, misdiagnosis and missed diagnosis in clinical practice. Electrocardiogram (ECG) examination is the simplest and fastest way to diagnose MI. The research on MI intelligent auxiliary diagnosis based on ECG is of great significance. On the basis of the pathophysiological mechanism of MI and characteristic changes in ECG, feature point extraction and morphology recognition of ECG, along with intelligent auxiliary diagnosis method of MI based on machine learning and deep learning are all summarized. The models, datasets, the number of ECG, the number of leads, input modes, evaluation methods and effects of different methods are compared. Finally, future research directions and development trends are pointed out, including data enhancement of MI, feature points and dynamic features extraction of ECG, the generalization and clinical interpretability of models, which are expected to provide references for researchers in related fields of MI intelligent auxiliary diagnosis.

摘要

心肌梗死(MI)具有死亡率高、突发性强和隐匿性等特点。临床实践中存在诊断延迟、误诊和漏诊等问题。心电图(ECG)检查是诊断MI最简单、最快的方法。基于ECG的MI智能辅助诊断研究具有重要意义。在MI的病理生理机制和ECG特征变化的基础上,总结了ECG的特征点提取与形态识别以及基于机器学习和深度学习的MI智能辅助诊断方法。比较了不同方法的模型、数据集、ECG数量、导联数量、输入模式、评估方法及效果。最后指出了未来的研究方向和发展趋势,包括MI的数据增强、ECG的特征点和动态特征提取、模型的泛化能力和临床可解释性等,有望为MI智能辅助诊断相关领域的研究人员提供参考。

相似文献

引用本文的文献

本文引用的文献

10
[Detection of inferior myocardial infarction based on morphological characteristics].基于形态学特征检测下壁心肌梗死
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Feb 25;38(1):65-71. doi: 10.7507/1001-5515.202001027.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验