INRES Pflanzenzüchtung, Rheinische Friedrich-Wilhelms-University, Bonn, Germany.
Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh.
Plant Genome. 2024 Mar;17(1):e20394. doi: 10.1002/tpg2.20394. Epub 2023 Oct 25.
Climate change causes extreme conditions like prolonged drought, which results in yield reductions due to its effects on nutrient balances such as nitrogen uptake and utilization by plants. Nitrogen (N) is a crucial nutrient element for plant growth and productivity. Understanding the mechanistic basis of nitrogen use efficiency (NUE) under drought conditions is essential to improve wheat (Triticum aestivum L.) yield. Here, we evaluated the genetic variation of NUE-related traits and photosynthesis response in a diversity panel of 200 wheat genotypes under drought and nitrogen stress conditions to uncover the inherent genetic variation and identify quantitative trait loci (QTLs) underlying these traits. The results revealed significant genetic variations among the genotypes in response to drought stress and nitrogen deprivation. Drought impacted plant performance more than N deprivation due to its effect on water and nutrient uptake. GWAS identified a total of 27 QTLs with a significant main effect on the drought-related traits, while 10 QTLs were strongly associated with the NUE traits. Haplotype analysis revealed two different haplotype blocks within the associated region on chromosomes 1B and 5A. The two haplotypes showed contrasting effects on N uptake and use efficiency traits. The in silico and transcript analyses implicated candidate gene coding for cold shock protein. This gene was the most highly expressed gene under several stress conditions, including drought stress. Upon validation, these QTLs on 1B and 5A could be used as a diagnostic marker for NUE and drought tolerance screening in wheat.
气候变化导致极端条件,如长时间的干旱,这会影响植物对氮等营养物质的吸收和利用,从而导致产量下降。氮(N)是植物生长和生产力的关键营养元素。了解干旱条件下氮利用效率(NUE)的机制基础对于提高小麦(Triticum aestivum L.)产量至关重要。在这里,我们评估了 200 个小麦基因型在干旱和氮胁迫条件下与氮利用效率相关的性状和光合作用响应的遗传变异,以揭示潜在的遗传变异,并确定这些性状的数量性状位点(QTLs)。结果表明,基因型对干旱胁迫和氮剥夺的响应存在显著的遗传变异。由于干旱对水和养分吸收的影响,其对植物性能的影响大于氮剥夺。全基因组关联分析(GWAS)共鉴定出 27 个与干旱相关性状有显著主效的 QTL,而 10 个 QTL与 NUE 性状强烈相关。单倍型分析揭示了在染色体 1B 和 5A 上与关联区域内的两个不同的单倍型块。这两个单倍型在氮吸收和利用效率性状上表现出相反的效应。计算机分析和转录分析表明,候选基因编码冷休克蛋白。该基因在包括干旱胁迫在内的多种胁迫条件下表达水平最高。经过验证,1B 和 5A 上的这些 QTL 可用于小麦的 NUE 和耐旱性筛选的诊断标记。