Suppr超能文献

基于无代码人工智能模型的溃疡性结肠炎组织学检测

The Histological Detection of Ulcerative Colitis Using a No-Code Artificial Intelligence Model.

机构信息

Department of Diagnostic Pathology, Kinki Central Hospital of Mutual Aid Association of Public School Teachers, Itami, Hyogo, Japan.

Faculty of Medicine Division of Medicine, Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan.

出版信息

Int J Surg Pathol. 2024 Aug;32(5):890-894. doi: 10.1177/10668969231204955. Epub 2023 Oct 25.

Abstract

Ulcerative colitis (UC) is an intractable disease that affects young adults. Histological findings are essential for its diagnosis; however, the number of diagnostic pathologists is limited. Herein, we used a no-code artificial intelligence (AI) platform "Teachable Machine" to train a model that could distinguish between histological images of UC, non-UC coloproctitis, adenocarcinoma, and control. A total of 5100 histological images for training and 900 histological images for testing were prepared by pathologists. Our model showed accuracies of 0.99, 1.00, 0.99, and 0.99, for UC, non-UC coloproctitis, adenocarcinoma, and control, respectively. This is the first report in which a no-code easy AI platform has been able to comprehensively recognize the distinctive histologic patterns of UC.

摘要

溃疡性结肠炎(UC)是一种影响年轻人的难治性疾病。组织学发现对其诊断至关重要;然而,诊断病理学家的数量有限。在此,我们使用无代码人工智能(AI)平台“Teachable Machine”来训练一个能够区分 UC、非 UC 结肠炎、腺癌和对照组织学图像的模型。由病理学家准备了 5100 张用于训练的组织学图像和 900 张用于测试的组织学图像。我们的模型对 UC、非 UC 结肠炎、腺癌和对照的准确率分别为 0.99、1.00、0.99 和 0.99。这是第一个报告无代码简易 AI 平台能够全面识别 UC 独特组织学模式的报告。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验