Fernando Ashan, Khan Desmond, Hoffmann Mark R, Çakır Deniz
Department of Physics and Astrophysics, University of North Dakota, Grand Forks, North Dakota 58202, USA.
Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA.
Phys Chem Chem Phys. 2023 Nov 8;25(43):29624-29632. doi: 10.1039/d3cp02944a.
We investigated the interaction between biomimetic Fe and Mg co-doped montmorillonite nanoclay and eleven unnatural amino acids. Employing three different functionals (PBE-GGA, PBE-GGA + U, and HSE06), we examined the clay's structural, electronic, and magnetic properties. Our results revealed the necessity of using PBE-GGA + U with ≥ 4 eV to accurately describe key clay properties. We identified amino acids that strongly interacted with the clay surface, with steric orientation playing a crucial role in facilitating binding. Our DFT calculations highlighted significant electrostatic interactions between the amino acids and the clay slab, with the amino group's predominant role in this interaction. These findings hold promise for designing amino acids for clay-amino acid systems, leading to innovative bio-material composites for various applications. Additionally, our molecular dynamics simulations confirmed the stability of clay-amino acid systems under ambient conditions, and the introduction of an implicit water solvent enhanced the binding energy of amino acids on the clay surface.
我们研究了仿生铁和镁共掺杂蒙脱石纳米粘土与十一种非天然氨基酸之间的相互作用。采用三种不同的泛函(PBE-GGA、PBE-GGA + U和HSE06),我们研究了粘土的结构、电子和磁性性质。我们的结果表明,需要使用≥4 eV的PBE-GGA + U来准确描述关键的粘土性质。我们确定了与粘土表面强烈相互作用的氨基酸,空间取向在促进结合中起着关键作用。我们的密度泛函理论(DFT)计算突出了氨基酸与粘土板之间显著的静电相互作用,其中氨基在这种相互作用中起主要作用。这些发现为设计用于粘土-氨基酸系统的氨基酸带来了希望,从而产生用于各种应用的创新生物材料复合材料。此外,我们的分子动力学模拟证实了粘土-氨基酸系统在环境条件下的稳定性,并且引入隐式水溶剂增强了氨基酸在粘土表面的结合能。