Suppr超能文献

改善 ICU 患者 30 天生存率预估:真实世界数据下不同方法的比较分析。

Improved 30-Day Survival Estimation in ICU Patients: A Comparative Analysis of Different Approaches With Real-World Data.

机构信息

PHE3ID, Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, CNRS Unité Mixte de Recherche 5308, École Nationale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France.

Service d'Anesthésie Réanimation-Médecine Intensive, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France.

出版信息

Crit Care Med. 2024 Mar 1;52(3):432-440. doi: 10.1097/CCM.0000000000006097. Epub 2023 Oct 26.

Abstract

OBJECTIVES

The objective of this study was to compare three different approaches for estimating 30-day survival in ICU studies, considering the issue of informative censoring that occurs when patients are lost to follow-up after discharge.

DESIGN

A comparative analysis was conducted to evaluate the effect of different approaches on the estimation of 30-day survival. Three methods were compared: the classical approach using the Kaplan-Meier (KM) estimator and Cox regression modeling, the competing risk approach using the Fine and gray model, considering censoring as a competing event, and the logistic regression approach.

SETTING

The study was conducted in a university ICU and data from patients admitted between 2010 and 2020 were included. Patient characteristics were collected from electronic records.

PATIENTS

A total of 10,581 patients were included in the study. The true date of death for each patient, obtained from a national registry, allowed for an absence of censoring.

INTERVENTIONS

All patients were censored at the time of discharge from the ICU, and the three different approaches were applied to estimate the mortality rate and the effects of covariates on mortality. Regression analyses were performed using five variables known to be associated with ICU mortality.

MEASUREMENTS AND MAIN RESULTS

The 30-day survival rate for the included patients was found to be 80.5% (95% CI, 79.7-81.2%). The KM estimator severely underestimated the 30-day survival (50.6%; 95% CI, 48.0-53.4%), while the competing risk and logistic regression approaches provided similar results, only slightly overestimating the survival rate (84.5%; 95% CI, 83.8-85.2%). Regression analyses showed that the estimates were not systematically biased, with the Cox and logistic regression models exhibiting greater bias compared with the competing risk regression method.

CONCLUSIONS

The competing risk approach provides more accurate estimates of 30-day survival and is less biased compared with the other methods evaluated.

摘要

目的

本研究旨在比较三种不同方法估计 ICU 研究中 30 天生存率,考虑到患者出院后失访时发生信息性删失的问题。

设计

进行了一项比较分析,以评估不同方法对 30 天生存率估计的影响。比较了三种方法:使用 Kaplan-Meier(KM)估计器和 Cox 回归建模的经典方法、考虑删失作为竞争事件的 Fine 和 Gray 模型的竞争风险方法,以及 logistic 回归方法。

设置

该研究在一所大学 ICU 进行,纳入了 2010 年至 2020 年期间入院的患者数据。从电子记录中收集患者特征。

患者

共有 10581 名患者纳入研究。每位患者的真实死亡日期是从国家登记处获得的,不存在删失。

干预

所有患者在 ICU 出院时被删失,并应用三种不同方法估计死亡率和协变量对死亡率的影响。使用五个已知与 ICU 死亡率相关的变量进行回归分析。

测量和主要结果

纳入患者的 30 天生存率为 80.5%(95%CI,79.7-81.2%)。KM 估计器严重低估了 30 天生存率(50.6%;95%CI,48.0-53.4%),而竞争风险和 logistic 回归方法提供了相似的结果,仅略微高估了生存率(84.5%;95%CI,83.8-85.2%)。回归分析表明,估计值没有系统偏差,Cox 和 logistic 回归模型的偏差大于竞争风险回归模型。

结论

与评估的其他方法相比,竞争风险方法提供了更准确的 30 天生存率估计,且偏差更小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验