Vanderbilt University Medical Center, Departments of Anesthesiology and Biomedical Informatics, 1211 21(st) Avenue South, Nashville, TN 37212, USA.
Vanderbilt University Medical Center, Department of Anesthesiology, 1211 21(st) Avenue South, Nashville, TN 37212, USA.
J Clin Anesth. 2024 Feb;92:111295. doi: 10.1016/j.jclinane.2023.111295. Epub 2023 Oct 24.
Explore validation of a model to predict patients' risk of failing extubation, to help providers make informed, data-driven decisions regarding the optimal timing of extubation.
We performed temporal, geographic, and domain validations of a model for the risk of reintubation after cardiac surgery by assessing its performance on data sets from three academic medical centers, with temporal validation using data from the institution where the model was developed.
Three academic medical centers in the United States.
Adult patients arriving in the cardiac intensive care unit with an endotracheal tube in place after cardiac surgery.
Receiver operating characteristic (ROC) curves and concordance statistics were used as measures of discriminative ability, and calibration curves and Brier scores were used to assess the model's predictive ability.
Temporal validation was performed in 1642 patients with a reintubation rate of 4.8%, with the model demonstrating strong discrimination (optimism-corrected c-statistic 0.77) and low predictive error (Brier score 0.044) but poor model precision and recall (Optimal F1 score 0.29). Combined domain and geographic validation were performed in 2041 patients with a reintubation rate of 1.5%. The model displayed solid discriminative ability (optimism-corrected c-statistic = 0.73) and low predictive error (Brier score = 0.0149) but low precision and recall (Optimal F1 score = 0.13). Geographic validation was performed in 2489 patients with a reintubation rate of 1.6%, with the model displaying good discrimination (optimism-corrected c-statistic = 0.71) and predictive error (Brier score = 0.0152) but poor precision and recall (Optimal F1 score = 0.13).
The reintubation model displayed strong discriminative ability and low predictive error within each validation cohort.
Future work is needed to explore how to optimize models before local implementation.
探索一种预测患者拔管失败风险的模型的验证情况,以帮助提供者做出知情的、基于数据的关于最佳拔管时机的决策。
我们通过评估来自三个学术医疗中心的数据集中模型对心脏手术后再次插管风险的性能,对该模型进行了时间、地理和领域验证,其中时间验证使用了模型开发机构的数据。
美国的三个学术医疗中心。
心脏手术后到达心脏重症监护病房且带有气管内管的成年患者。
接收者操作特征(ROC)曲线和一致性统计数据被用作区分能力的度量,校准曲线和 Brier 分数被用于评估模型的预测能力。
在 1642 名再次插管率为 4.8%的患者中进行了时间验证,该模型表现出很强的区分能力(矫正后的乐观 c 统计量为 0.77)和低预测误差(Brier 分数为 0.044),但模型精度和召回率低(最佳 F1 分数为 0.29)。在 2041 名再次插管率为 1.5%的患者中进行了联合领域和地理验证。该模型显示出稳定的区分能力(矫正后的乐观 c 统计量为 0.73)和低预测误差(Brier 分数为 0.0149),但精度和召回率低(最佳 F1 分数为 0.13)。在 2489 名再次插管率为 1.6%的患者中进行了地理验证,该模型显示出良好的区分能力(矫正后的乐观 c 统计量为 0.71)和预测误差(Brier 分数为 0.0152),但精度和召回率低(最佳 F1 分数为 0.13)。
该再插管模型在每个验证队列中都显示出较强的区分能力和较低的预测误差。
在进行本地实施之前,需要进一步研究如何优化模型。