Suppr超能文献

丢包情况下基于粒子滤波的非线性事件驱动状态估计

Nonlinear event-based state estimation using particle filter under packet loss.

作者信息

Gasmi Elhadi, Sid Mohamed Amine, Hachana Oussama

机构信息

L.A.G.E, Universty of Kasdi Merbah, Ouargla, 30000, Algeria; Mechatronics Laboratory (LMETR) - E1764200 Optics and Precision Mechanics Institute Ferhat Abbas University Setif 1, 19000 Setif, Algeria.

Mechatronics Laboratory (LMETR) - E1764200 Optics and Precision Mechanics Institute Ferhat Abbas University Setif 1, 19000 Setif, Algeria.

出版信息

ISA Trans. 2024 Jan;144:176-187. doi: 10.1016/j.isatra.2023.10.012. Epub 2023 Oct 14.

Abstract

In this research paper, we investigate the problem of remote state estimation for nonlinear discrete systems. Specifically, we focus on scenarios where event-triggered sensor schedules are utilized and where packet drops occur between the sensor and the estimator. In the sensor scheduler, the SOD mechanism is proposed to decrease the amount of data transmitted from the sensor to a remote estimator and the phenomena of packet drops modeled with random variables obeying the Bernoulli distribution. As a consequence of packet drops, the assumption of Gaussianity no longer holds at the estimator side. By fully considering the non-linearity and non-Gaussianity of the dynamic system, this paper develops an event-trigger particle filter algorithm to relieve the communication burden and achieve an appropriate estimation accuracy. First, we derive an explicit expression for the likelihood function when an event trigger occurs and the possible occurrence of packet dropout is taken into consideration. Then, using a special form of sequential Monte-Carlo algorithm, the posterior distribution is approximated and the corresponding minimum mean-squared error is derived. By contrasting the error covariance matrix with the posterior Cramér-Rao lower bound, the estimator's performance is assessed. An illustrative numerical example shows the effectiveness of the proposed design.

摘要

在本研究论文中,我们研究非线性离散系统的远程状态估计问题。具体而言,我们关注使用事件触发传感器调度的场景以及传感器与估计器之间发生数据包丢失的场景。在传感器调度器中,提出了SOD机制以减少从传感器传输到远程估计器的数据量,并对服从伯努利分布的随机变量建模的数据包丢失现象进行了研究。由于数据包丢失,估计器端的高斯性假设不再成立。通过充分考虑动态系统的非线性和非高斯性,本文开发了一种事件触发粒子滤波算法,以减轻通信负担并实现适当的估计精度。首先,我们推导了在考虑事件触发和可能发生的数据包丢失时似然函数的显式表达式。然后,使用一种特殊形式的序贯蒙特卡罗算法,近似后验分布并推导相应的最小均方误差。通过将误差协方差矩阵与后验克拉美罗下界进行对比,评估估计器的性能。一个说明性的数值例子展示了所提出设计的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验