Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, USA.
Nucleic Acids Res. 2023 Nov 27;51(21):e106. doi: 10.1093/nar/gkad843.
In metazoans, both transcription initiation and the escape of RNA polymerase (RNAP) from promoter-proximal pausing are key rate-limiting steps in gene expression. These processes play out at physically proximal sites on the DNA template and appear to influence one another through steric interactions. Here, we examine the dynamics of these processes using a combination of statistical modeling, simulation, and analysis of real nascent RNA sequencing data. We develop a simple probabilistic model that jointly describes the kinetics of transcription initiation, pause-escape, and elongation, and the generation of nascent RNA sequencing read counts under steady-state conditions. We then extend this initial model to allow for variability across cells in promoter-proximal pause site locations and steric hindrance of transcription initiation from paused RNAPs. In an extensive series of simulations, we show that this model enables accurate estimation of initiation and pause-escape rates. Furthermore, we show by simulation and analysis of real data that pause-escape is often strongly rate-limiting and that steric hindrance can dramatically reduce initiation rates. Our modeling framework is applicable to a variety of inference problems, and our software for estimation and simulation is freely available.
在后生动物中,转录起始和 RNA 聚合酶 (RNAP) 从启动子近端暂停中逃逸都是基因表达的关键限速步骤。这些过程在 DNA 模板上的物理接近位点上进行,并且似乎通过空间相互作用相互影响。在这里,我们使用统计建模、模拟和真实新生 RNA 测序数据的分析相结合,来研究这些过程的动力学。我们开发了一个简单的概率模型,该模型联合描述了转录起始、暂停逃逸和延伸的动力学,以及在稳态条件下生成新生 RNA 测序读计数的过程。然后,我们将此初始模型扩展到允许在启动子近端暂停位点位置和暂停的 RNAP 转录起始的空间阻碍方面存在细胞间变异性。在一系列广泛的模拟中,我们表明该模型能够准确估计起始和暂停逃逸速率。此外,我们通过模拟和真实数据的分析表明,暂停逃逸通常是强烈的限速步骤,空间阻碍可以大大降低起始速率。我们的建模框架适用于各种推理问题,我们的估计和模拟软件是免费提供的。