Suppr超能文献

磷脂/水体系中冷冻诱导的相转变和局部压力:通过时间/温度分辨同步辐射 X 射线衍射研究获得的新见解。

Freeze-Induced Phase Transition and Local Pressure in a Phospholipid/Water System: Novel Insights Were Obtained from a Time/Temperature Resolved Synchrotron X-ray Diffraction Study.

机构信息

Centro de Química Estrutural, Instituto Superior Tecnico, University of Lisbon, Lisbon 1049-001, Portugal.

Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.

出版信息

Mol Pharm. 2023 Nov 6;20(11):5790-5799. doi: 10.1021/acs.molpharmaceut.3c00657. Epub 2023 Oct 27.

Abstract

Water-to-ice transformation results in a 10% increase in volume, which can have a significant impact on biopharmaceuticals during freeze-thaw cycles due to the mechanical stresses imparted by the growing ice crystals. Whether these stresses would contribute to the destabilization of biopharmaceuticals depends on both the magnitude of the stress and sensitivity of a particular system to pressure and sheer stresses. To address the gap of the "magnitude" question, a phospholipid, 1,2-dipalmitoyl--glycero-3-phosphocholine (DPPC), is evaluated as a probe to detect and quantify the freeze-induced pressure. DPPC can form several phases under elevated pressure, and therefore, the detection of a high-pressure DPPC phase during freezing would be indicative of a freeze-induced pressure increase. In this study, the phase behavior of DPPC/water suspensions, which also contain the ice nucleation agent silver iodide, is monitored by synchrotron small/wide-angle X-ray scattering during the freeze-thaw transition. Cooling the suspensions leads to heterogeneous ice nucleation at approximately -7 °C, followed by a phase transition of DPPC between -11 and -40 °C. In this temperature range, the initial gel phase of DPPC, Lβ', gradually converts to a second phase, tentatively identified as a high-pressure Gel III phase. The Lβ'-to-Gel III phase transition continues during an isothermal hold at -40 °C; a second (homogeneous) ice nucleation event of water confined in the interlamellar space is detected by differential scanning calorimetry (DSC) at the same temperature. The extent of the phase transition depends on the DPPC concentration, with a lower DPPC concentration (and therefore a higher ice fraction), resulting in a higher degree of Lβ'-to-Gel III conversion. By comparing the data from this study with the literature data on the pressure/temperature Lβ'/Gel III phase boundary and the lamellar lattice constant of the Lβ' phase, the freeze-induced pressure is estimated to be approximately 0.2-2.6 kbar. The study introduces DPPC as a probe to detect a pressure increase during freezing, therefore addressing the gap between a theoretical possibility of protein destabilization by freeze-induced pressure and the current lack of methods to detect freeze-induced pressure. In addition, the observation of a freeze-induced phase transition in a phospholipid can improve the mechanistic understanding of factors that could disrupt the structure of lipid-based biopharmaceuticals, such as liposomes and mRNA vaccines, during freezing and thawing.

摘要

水结冰会导致体积增加 10%,这在冷冻-解冻循环中会对生物制药产生重大影响,因为不断生长的冰晶会产生机械应力。这些应力是否会导致生物制药失稳取决于应力的大小以及特定系统对压力和切应力的敏感程度。为了解决“大小”问题,使用 1,2-二棕榈酰基-sn-甘油-3-磷酸胆碱(DPPC)作为探针来检测和量化冷冻诱导的压力。DPPC 在高压下可以形成几种相,因此,在冷冻过程中检测到高压 DPPC 相表明存在冷冻诱导的压力增加。在这项研究中,通过同步加速器小/广角 X 射线散射在冷冻-解冻过程中监测 DPPC/水悬浮液的相行为,该悬浮液还含有冰成核剂碘化银。冷却悬浮液导致约-7°C 的异质冰成核,随后 DPPC 在-11 和-40°C 之间发生相变。在这个温度范围内,DPPC 的初始凝胶相 Lβ'逐渐转化为第二相,初步鉴定为高压 Gel III 相。Lβ'-到-Gel III 相转变在-40°C 的等温保持过程中继续进行;通过差示扫描量热法(DSC)在相同温度下检测到层间空间中受限水的第二个(同质)冰成核事件。相转变的程度取决于 DPPC 的浓度,较低的 DPPC 浓度(因此冰的比例更高)导致更高程度的 Lβ'-到-Gel III 转化。通过将本研究的数据与文献中关于压力/温度 Lβ'/Gel III 相界和 Lβ'相的层状晶格常数的数据进行比较,估计冷冻诱导的压力约为 0.2-2.6 kbar。该研究将 DPPC 作为检测冷冻过程中压力增加的探针,因此填补了冷冻诱导压力导致蛋白质失稳的理论可能性与目前缺乏检测冷冻诱导压力的方法之间的空白。此外,观察到磷脂中的冷冻诱导相变可以提高对可能破坏脂质基生物制药(如脂质体和 mRNA 疫苗)结构的因素的机械理解,这些因素在冷冻和解冻过程中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbd6/10630958/160ef0c7fc60/mp3c00657_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验