Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada; Op+lait, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada; Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada.
Lactanet, Sainte-Anne-de-Bellevue, Canada.
Prev Vet Med. 2023 Nov;220:106048. doi: 10.1016/j.prevetmed.2023.106048. Epub 2023 Oct 21.
There is currently no perfect test for determining herd-level status for Salmonella Dublin in dairy cattle herds. Our objectives were to evaluate the accuracy, predictive ability, and misclassification cost term of different testing scenarios using repeated measurements for establishing the S. Dublin herd status. Diagnostic strategies investigated used repeated bulk tank milk antibody-ELISA tests, repeated rounds of blood antibody-ELISA tests on non-lactating animals or a combination of both approaches. Two populations hypothesized to have different S. Dublin prevalences were included: (i) a convenience sample of 302 herds with unknown history of infection; and (ii) a cohort of 58 herds that previously tested positive to S. Dublin. Bulk milk samples were collected monthly for 6-7 months and serum were obtained from 10 young animals on two occasions, at the beginning and end of bulk milk sampling period. A series of Bayesian latent class models for two populations and comparing two tests were used to compare bulk milk-based to serum-based strategies. Moreover, Monte Carlo simulations were used to compared diagnostic strategies combining both types of samples. For each diagnostic strategy, we estimated the predictive values using two theoretical prevalences (0.05 and 0.25). Misclassification cost term was also estimated for each strategy using these two prevalences and a few relevant false-negative to false-positive cost ratios. When used for screening a population with an expected low prevalence of disease, for instance for screening herds with no clinical signs and no previous S. Dublin history, a diagnostic strategy consisting of two visits at 6 months interval, and with herd considered positive if bulk milk PP% ≥ 35 and/or ≥ 1/10 animals are positive on one or both visits could be used to confidently rule-out S. Dublin infection (median negative predictive value of 0.99; 95% Bayesian credible intervals, 95BCI: 0.98, 1.0). With this approach, however, positive results should later be confirmed with more specific tests to confirm whether S. Dublin is truly present (median positive predictive value of 0.36; 95BCI: 0.22, 0.57). The same diagnostic strategy could also be used confidently to reassess the S. Dublin status in herds with a previous S. Dublin history. When use for such a purpose, the predictive value of a positive result could be greatly improved, from 0.78 (95BCI: 0.65, 0.90) to 0.99 (95BCI: 0.94, 1.0) by requiring ≥ 1 positive result on both visits, rather than at any of the two visits.
目前,尚无用于确定奶牛群中都柏林沙门氏菌群体状态的完美检测方法。我们的目标是通过重复测量来评估不同检测方案的准确性、预测能力和错误分类成本项,以确定都柏林沙门氏菌的群体状态。所研究的诊断策略包括重复使用大容量牛奶抗体酶联免疫吸附试验、重复对非泌乳动物进行血液抗体酶联免疫吸附试验或两者结合的方法。包括两个假设的具有不同都柏林沙门氏菌流行率的群体:(i)一个 302 个具有未知感染史的牧场的便利样本;(ii)一组先前检测到都柏林沙门氏菌阳性的 58 个牧场。每月采集大容量牛奶样本 6-7 个月,并在大容量牛奶采样期的开始和结束时从 10 只幼畜中获得血清。使用两个具有不同流行率的群体的一系列贝叶斯潜在类别模型和比较两种检测方法,比较基于大容量牛奶的策略与基于血清的策略。此外,还使用蒙特卡罗模拟来比较结合两种类型样本的诊断策略。对于每种诊断策略,我们使用两个理论流行率(0.05 和 0.25)来估计预测值。对于每种策略,我们还使用这两个流行率和一些相关的假阴性到假阳性成本比来估计错误分类成本项。当用于筛查具有低疾病预期流行率的群体时,例如用于筛查无临床症状且无先前都柏林沙门氏菌病史的牧场,一种诊断策略可以在 6 个月的间隔内进行两次访问,如果大容量牛奶 PP%≥35 和/或≥1/10 的动物在一次或两次访问中均为阳性,则可将群体视为阳性,可以有把握地排除都柏林沙门氏菌感染(中位阴性预测值为 0.99;95%贝叶斯可信区间,95BCI:0.98,1.0)。然而,使用这种方法,阳性结果后来需要用更具体的测试来确认是否真的存在都柏林沙门氏菌(中位阳性预测值为 0.36;95BCI:0.22,0.57)。相同的诊断策略也可以用于有先前都柏林沙门氏菌病史的牧场有把握地重新评估都柏林沙门氏菌的状态。当用于此目的时,阳性结果的预测值可以从 0.78(95BCI:0.65,0.90)大大提高到 0.99(95BCI:0.94,1.0),要求两次访问均有≥1 个阳性结果,而不是两次访问中的任何一次。