Suppr超能文献

STFS-urban:城市时空洪水模拟模型。

STFS-urban: Spatio-temporal flood simulation model for urban areas.

机构信息

Key Laboratory of VGE of Ministry of Education, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.

Key Laboratory of VGE of Ministry of Education, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.

出版信息

J Environ Manage. 2024 Jan 1;349:119289. doi: 10.1016/j.jenvman.2023.119289. Epub 2023 Oct 27.

Abstract

Amidst escalating urbanization and increasing extreme climatic events, strengthening flood resilience strategies in global cities has become imperative. This study introduces an innovative spatiotemporal urban flood simulation model that seamlessly integrates diverse refined and multi-spatiotemporal scales, ranging from 7.5 to 60 min and 100-2000 m, respectively. The model comprises multi-scale radar rainfall inversion (MRI), fine-grained coupled flood simulation model (FGCFS), and transformer-CNN flood prediction (TCFP) modules. Employing the Nanjing urban area as a case study, the model's efficacy is subjected to rigorous assessment. The advantages derived from integrated refinement coupling and boundary conditions through FGCFS and TCFP are accentuated. Impressively, the results underscore the robust performance of radar rainfall inversion across most scales, revealing a correlation coefficient surpassing 0.8 and a root-mean-square error of under 5.2 mm. FGCFS achieves optimal simulated water depth changes at 7.5 min × 500 m resolution, with the Nash efficiency coefficient exceeding 0.69 (0.94 at YS observation point and 0.89 at SXM observation point), alongside percentage deviations below 12.89 (3.59 at SXM observation point and 2.42 at XJL observation point). TCFP's learning proficiency is showcased through error convergence to 0.002 m after twenty iterations, particularly suitable for resolutions below 4 m. Notably, both FGCFS and TCFP demonstrate efficient utilization of resources, enabling streamlined simulations across varying data resolutions. Consequently, our study propels a sophisticated framework harmonizing multi-scale data integration, refinement coupling, and dynamic allocation. Our work extends beyond practical solutions, offering a glimpse into the future of flood simulation modeling, and reaffirming its pivotal role within the realm of environmental research and management.

摘要

在城市化不断加剧和极端气候事件不断增加的背景下,加强全球城市的防洪韧性策略已变得至关重要。本研究引入了一种创新的时空城市洪水模拟模型,该模型无缝集成了多种精细化和多时空尺度,分别为 7.5 至 60 分钟和 100 至 2000 米。该模型包括多尺度雷达降雨反演(MRI)、细粒度耦合洪水模拟模型(FGCFS)和变压器-CNN 洪水预测(TCFP)模块。以南京市为例进行研究,对模型的有效性进行了严格评估。强调了通过 FGCFS 和 TCFP 进行集成细化耦合和边界条件的优势。令人印象深刻的是,结果突出了雷达降雨反演在大多数尺度上的稳健性能,相关系数超过 0.8,均方根误差低于 5.2 毫米。FGCFS 在 7.5 分钟×500 米的分辨率下实现了最佳的模拟水深变化,纳什效率系数超过 0.69(YS 观测点为 0.94,SXM 观测点为 0.89),偏差百分比低于 12.89(SXM 观测点为 3.59,XJL 观测点为 2.42)。TCFP 通过在二十次迭代后将误差收敛到 0.002 米,展示了其学习能力。特别是对于低于 4 米的分辨率,这种方法非常适用。值得注意的是,FGCFS 和 TCFP 都实现了资源的高效利用,使得在不同数据分辨率下的模拟得以顺利进行。因此,我们的研究推动了一个复杂的框架,该框架协调了多尺度数据集成、细化耦合和动态分配。我们的工作不仅提供了实际解决方案,还展示了洪水模拟建模的未来前景,并再次确认了其在环境研究和管理领域的关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验