Suppr超能文献

基于模型的寨卡病毒病流行病学参数估计和不同数据类型的暴发风险。

Model-based estimates of chikungunya epidemiological parameters and outbreak risk from varied data types.

机构信息

Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.

Bavarian Nordic Inc., 6275 Nancy Ridge Drive Suite 110/120, San Diego, CA 92121, USA.

出版信息

Epidemics. 2023 Dec;45:100721. doi: 10.1016/j.epidem.2023.100721. Epub 2023 Oct 18.

Abstract

Assessing the factors responsible for differences in outbreak severity for the same pathogen is a challenging task, since outbreak data are often incomplete and may vary in type across outbreaks (e.g., daily case counts, serology, cases per household). We propose that outbreaks described with varied data types can be directly compared by using those data to estimate a common set of epidemiological parameters. To demonstrate this for chikungunya virus (CHIKV), we developed a realistic model of CHIKV transmission, along with a Bayesian inference method that accommodates any type of outbreak data that can be simulated. The inference method makes use of the fact that all data types arise from the same transmission process, which is simulated by the model. We applied these tools to data from three real-world outbreaks of CHIKV in Italy, Cambodia, and Bangladesh to estimate nine model parameters. We found that these populations differed in several parameters, including pre-existing immunity and house-to-house differences in mosquito activity. These differences resulted in posterior predictions of local CHIKV transmission risk that varied nearly fourfold: 16% in Italy, 28% in Cambodia, and 62% in Bangladesh. Our inference method and model can be applied to improve understanding of the epidemiology of CHIKV and other pathogens for which outbreaks are described with varied data types.

摘要

评估同一病原体引起的暴发严重程度差异的因素是一项具有挑战性的任务,因为暴发数据通常不完整,并且在暴发类型上可能存在差异(例如,每日病例数、血清学、每户病例数)。我们提出,使用这些数据来估计一组共同的流行病学参数,可以直接比较具有不同数据类型的暴发。为了证明这一点,我们针对基孔肯雅病毒(CHIKV)开发了一个现实的 CHIKV 传播模型,以及一个贝叶斯推断方法,该方法可以适应任何类型的暴发数据的模拟。该推断方法利用了所有数据类型都来自模型模拟的同一传播过程这一事实。我们将这些工具应用于来自意大利、柬埔寨和孟加拉国的三个真实 CHIKV 暴发的数据,以估计九个模型参数。我们发现,这些人群在几个参数上存在差异,包括预先存在的免疫力和蚊子活动在家庭间的差异。这些差异导致当地 CHIKV 传播风险的后验预测值差异近四倍:意大利为 16%,柬埔寨为 28%,孟加拉国为 62%。我们的推断方法和模型可以应用于改善对 CHIKV 等病原体的流行病学的理解,这些病原体的暴发数据类型存在差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验