Suppr超能文献

同时解决两个环境问题:源自混合塑料废物的微孔碳用于 CO 捕获。

Solving two environmental problems simultaneously:Microporous carbon derived from mixed plastic waste for CO capture.

机构信息

Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing, 211816, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.

Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing, 211816, PR China; College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.

出版信息

Chemosphere. 2023 Dec;345:140546. doi: 10.1016/j.chemosphere.2023.140546. Epub 2023 Oct 25.

Abstract

Conversion of plastic waste into porous carbon for CO capture is an attractive approach to solve the carbon emission and plastic pollution problems, simultaneously. However, the previous studies are limited to the utilization of single PET plastic. The conversion of mixed plastic waste (MPW), which is of more practical significance, is seldom reported. In this study, mixed plastic waste was converted into porous carbon materials for CO capture through cascading autogenic pressure carbonization (APC) and chemical activation. The carbon yield of 56% was achieved through APC of MPW. The activator (KOH) dosage had significant effects on the structure and properties of the prepared porous carbons. Porous carbon prepared with KOH/C ratio of 4 had the largest micropore area and the maximum CO adsorption was 2.7 mmol g at 298 K and 1 bar. The experimental data were well fitted to the pesudo first-order kinetic model. The MPW derived porous carbon exhibited not only high CO uptake capacity, but also fast adsorption rate, good selectivity of CO over N and good cyclic stability, which could be regarded as a promising adsorbent for CO adsorption.

摘要

将塑料废物转化为多孔碳以捕获 CO 是一种同时解决碳排放和塑料污染问题的有吸引力的方法。然而,以前的研究仅限于单一 PET 塑料的利用,对于更具实际意义的混合塑料废物 (MPW) 的转化却很少有报道。在这项研究中,通过级联自生压力碳化 (APC) 和化学活化,将混合塑料废物转化为用于 CO 捕获的多孔碳材料。通过 APC 可获得 56%的 MPW 碳产率。活化剂 (KOH) 用量对所制备的多孔碳的结构和性能有显著影响。KOH/C 比为 4 时制备的多孔碳具有最大的微孔面积,在 298 K 和 1 bar 下 CO 的最大吸附量为 2.7 mmol g。实验数据与准一级动力学模型拟合良好。MPW 衍生的多孔碳不仅具有高的 CO 吸收容量,而且具有较快的吸附速率、对 CO 的高选择性和对 N 的良好选择性以及良好的循环稳定性,可视为 CO 吸附的一种有前途的吸附剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验