Suppr超能文献

沸石增强铁改性生物载体驱动 Fe(II)/Fe(III) 循环实现富营养化水体脱氮。

Zeolite enhanced iron-modified biocarrier drives Fe(II)/Fe(III) cycle to achieve nitrogen removal from eutrophic water.

机构信息

Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.

School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, Liaoning, China.

出版信息

Chemosphere. 2024 Jan;346:140547. doi: 10.1016/j.chemosphere.2023.140547. Epub 2023 Oct 25.

Abstract

The problem of nitrogen removal in eutrophic water needs to be solved. Two new autotrophic nitrogen removal technologies, ammonia oxidation coupled with Fe(III) reduction (Feammox) and Nitrate-dependent Fe(II) oxidation (NDFO), have been shown to have the potential to treat eutrophic water. However, the continuous addition of iron sources not only costs more, but also leads to sludge mineralization. In this study, nano-sized iron powder was loaded on the surface of K3 filler as a solid iron source for the extracellular metabolism of iron-trophic bacteria. At the same time, due to the high selective adsorption of zeolite for ammonia can improve the low nitrogen metabolism rate caused by low nitrogen concentrations in eutrophic water, three kinds of modified functional biological carriers were prepared by mixing zeolite powder and iron powder in different proportions (Z1, Zeolite:iron = 1; Z2, Zeolite:iron = 2; Z3, Zeolite:iron = 3). Z3 exhibited the best performance, with removal efficiencies of 54.8% for total nitrogen during 70 days of cultivation. The chemical structure and state of iron compounds changed under microorganism activity. The ex-situ test detected high NDFO and Feammox activities, with values of 1.02 ± 0.23 and 0.16 ± 0.04 mgN/gVSS/h. The enrichment of NDFO bacteria (Gallionellaceae, 0.73%-1.43%-0.74%) and Feammox bacteria (Alicycliphilus, 1.51%-0.88%-2.30%) indicated that collaboration between various functional microorganisms led to autotrophic nitrogen removal. Hence, zeolite/iron-modified biocarrier could drive the Fe(II)/Fe(III) cycle to remove nitrogen autotrophically from eutrophic water without carbon and Fe resource addition.

摘要

需要解决富营养化水中的氮去除问题。两种新的自养氮去除技术,氨氧化耦合铁(III)还原(Feammox)和硝酸盐依赖型 Fe(II)氧化(NDFO),已被证明具有处理富营养化水的潜力。然而,连续添加铁源不仅成本更高,还会导致污泥矿化。在本研究中,纳米铁粉负载在 K3 填料表面作为铁营养菌胞外代谢的固体铁源。同时,由于沸石对氨的高选择性吸附可以提高富营养水中低氮浓度导致的低氮代谢速率,通过将沸石粉末和铁粉以不同比例混合(Z1,沸石:铁=1;Z2,沸石:铁=2;Z3,沸石:铁=3)制备了三种改性功能生物载体。在 70 天的培养过程中,Z3 的总氮去除效率最高,达到 54.8%。铁化合物的化学结构和状态在微生物活性下发生变化。在异位测试中检测到高 NDFO 和 Feammox 活性,值分别为 1.02±0.23 和 0.16±0.04 mgN/gVSS/h。NDFO 细菌(Gallionellaceae,0.73%-1.43%-0.74%)和 Feammox 细菌(Alicycliphilus,1.51%-0.88%-2.30%)的富集表明,各种功能微生物的协同作用导致了自养脱氮。因此,沸石/铁改性生物载体可以在不添加碳和铁资源的情况下,驱动 Fe(II)/Fe(III)循环,从富营养化水中自养去除氮。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验