Suppr超能文献

生命第一年严重呼吸道合胞病毒感染的危险因素:临床预测模型的建立和验证。

Risk factors for severe respiratory syncytial virus infection during the first year of life: development and validation of a clinical prediction model.

机构信息

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Pediatric Research Center, Helsinki University Hospital, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.

出版信息

Lancet Digit Health. 2023 Nov;5(11):e821-e830. doi: 10.1016/S2589-7500(23)00175-9.

Abstract

BACKGROUND

Novel immunisation methods against respiratory syncytial virus (RSV) are emerging, but knowledge of risk factors for severe RSV disease is insufficient for optimal targeting of interventions against them. Our aims were to identify predictors for RSV hospital admission from registry-based data and to develop and validate a clinical prediction model to guide RSV immunoprophylaxis for infants younger than 1 year.

METHODS

In this model development and validation study, we studied all infants born in Finland between June 1, 1997, and May 31, 2020, and in Sweden between June 1, 2006, and May 31, 2020, along with the data for their parents and siblings. Infants were excluded if they died or were admitted to hospital for RSV within the first 7 days of life. The outcome was hospital admission due to RSV bronchiolitis during the first year of life. The Finnish study population was divided into a development dataset (born between June 1, 1997, and May 31, 2017) and a temporal hold-out validation dataset (born between June 1, 2017, and May 31, 2020). The development dataset was used for predictor discovery and selection in which we screened 1511 candidate predictors from the infants', parents', and siblings' data, and developed a logistic regression model with the 16 most important predictors. This model was then validated using the Finnish hold-out validation dataset and the Swedish dataset.

FINDINGS

In total, there were 1 124 561 infants in the Finnish development dataset, 130 352 infants in the Finnish hold-out validation dataset, and 1 459 472 infants in the Swedish dataset. In addition to known predictors such as severe congenital heart defects (adjusted odds ratio 2·89, 95% CI 2·28-3·65), we confirmed some less established predictors for RSV hospital admission, most notably oesophageal malformations (3·11, 1·86-5·19) and lower complexity congenital heart defects (1·43, 1·25-1·63). The prediction model's C-statistic was 0·766 (95% CI 0·742-0·789) in Finnish data and 0·737 (0·710-0·762) in Swedish validation data. The infants in the highest decile of predicted RSV hospital admission probability had 4·5 times higher observed risk compared with others. Calibration varied according to epidemic intensity. The model's performance was similar to a machine learning (XGboost) model using all 1511 candidate predictors (C-statistic in Finland 0·771, 95% CI 0·754-0·788). The prediction model showed clinical utility in decision curve analysis and in hypothetical number needed to treat calculations for immunisation, and its C-statistic was similar across different strata of parental income.

INTERPRETATION

The identified predictors and the prediction model can be used in guiding RSV immunoprophylaxis in infants, or as a basis for further immunoprophylaxis targeting tools.

FUNDING

Sigrid Jusélius Foundation, European Research Council, Pediatric Research Foundation, and Academy of Finland.

摘要

背景

针对呼吸道合胞病毒(RSV)的新型免疫方法正在出现,但针对 RSV 疾病严重程度的风险因素的了解还不足以针对这些因素进行最佳干预。我们的目的是从基于登记的资料中确定 RSV 住院的预测因素,并制定和验证一种临床预测模型,以指导年龄小于 1 岁的婴儿进行 RSV 免疫预防。

方法

在这项模型开发和验证研究中,我们研究了芬兰所有于 1997 年 6 月 1 日至 2020 年 5 月 31 日期间出生的婴儿及其父母和兄弟姐妹的数据,以及瑞典所有于 2006 年 6 月 1 日至 2020 年 5 月 31 日期间出生的婴儿及其父母和兄弟姐妹的数据。如果婴儿在出生后 7 天内因 RSV 死亡或住院,将其排除在外。本研究的结局是婴儿在出生后的第一年因 RSV 细支气管炎而住院。芬兰研究人群被分为开发数据集(1997 年 6 月 1 日至 2017 年 5 月 31 日出生)和临时保留验证数据集(2017 年 6 月 1 日至 2020 年 5 月 31 日出生)。在候选预测因素筛选和建立逻辑回归模型中,我们从婴儿、父母和兄弟姐妹的数据中筛选了 1511 个候选预测因素,并使用 16 个最重要的预测因素建立了模型。然后,我们使用芬兰保留验证数据集和瑞典数据集对该模型进行了验证。

结果

芬兰开发数据集共有 1124561 名婴儿,芬兰保留验证数据集有 130352 名婴儿,瑞典数据集有 1459472 名婴儿。除了严重先天性心脏缺陷(校正比值比 2.89,95%CI 2.28-3.65)等已知预测因素外,我们还确认了一些不太确定的 RSV 住院预测因素,最显著的是食管畸形(3.11,1.86-5.19)和较不复杂的先天性心脏缺陷(1.43,1.25-1.63)。该预测模型在芬兰数据中的 C 统计量为 0.766(95%CI 0.742-0.789),在瑞典验证数据中的 C 统计量为 0.737(0.710-0.762)。在预测 RSV 住院概率最高的十分位数中的婴儿,其观察到的风险比其他人高 4.5 倍。根据流行强度,校准情况有所不同。该模型的性能与使用所有 1511 个候选预测因素的机器学习(XGboost)模型相似(芬兰的 C 统计量为 0.771,95%CI 0.754-0.788)。预测模型在决策曲线分析和免疫接种的假设需要治疗人数计算中具有临床实用性,其 C 统计量在不同父母收入阶层中相似。

解释

所确定的预测因素和预测模型可用于指导婴儿的 RSV 免疫预防,或作为进一步免疫预防靶向工具的基础。

资助

西吉莉亚基金会、欧洲研究理事会、儿科研究基金会和芬兰科学院。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验