Suppr超能文献

观察性研究治疗神经系统疾病有效性的方法学考虑:临床医生指南。

Methodological considerations for observational studies of treatment effectiveness in neurology: a clinician's guide.

机构信息

CORe, Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia

Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia.

出版信息

J Neurol Neurosurg Psychiatry. 2024 Apr 12;95(5):454-460. doi: 10.1136/jnnp-2022-330038.

Abstract

Data from cohorts, registries, randomised trials, electronic medical records and administrative claims databases have increasingly been used to inform the use of therapies for neurological diseases. While novel sophisticated methods are enabling us to use existing data to guide treatment decisions, the complexity of statistical methodology is making appraisal of clinical evidence increasingly demanding. In this narrative review, we provide a brief overview of the most commonly used methods for evaluation of treatment effectiveness in neurology. This primer discusses complementarity of randomised and non-randomised study designs, sources of observational data, different forms of bias and the appropriate mitigation strategies, statistical significance, Bayesian approaches and provides an overview of multivariable regression models, propensity score-based models, causal inference, mediation analysis and Mendelian randomisation.

摘要

来自队列研究、登记处、随机临床试验、电子病历和行政索赔数据库的数据越来越多地被用于为神经疾病的治疗提供信息。虽然新颖的复杂方法使我们能够利用现有数据来指导治疗决策,但统计方法的复杂性使得对临床证据的评估变得越来越具有挑战性。在这篇叙述性评论中,我们简要概述了在神经病学中评估治疗效果最常用的方法。本入门读物讨论了随机和非随机研究设计的互补性、观察性数据的来源、不同形式的偏倚及其适当的缓解策略、统计学意义、贝叶斯方法,并概述了多变量回归模型、倾向评分匹配模型、因果推断、中介分析和孟德尔随机化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验