Suppr超能文献

基于主树模型分析的肌萎缩侧索硬化症(ALS)共病轨迹检测

Detection of Amyotrophic Lateral Sclerosis (ALS) Comorbidity Trajectories Based on Principal Tree Model Analytics.

作者信息

Wu Yang-Sheng, Taniar David, Adhinugraha Kiki, Tsai Li-Kai, Pai Tun-Wen

机构信息

Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 106, Taiwan.

Department of Software Systems & Cybersecurity, Monash University, Melbourne, VIC 3800, Australia.

出版信息

Biomedicines. 2023 Sep 25;11(10):2629. doi: 10.3390/biomedicines11102629.

Abstract

The multifaceted nature and swift progression of Amyotrophic Lateral Sclerosis (ALS) pose considerable challenges to our understanding of its evolution and interplay with comorbid conditions. This study seeks to elucidate the temporal dynamics of ALS progression and its interaction with associated diseases. We employed a principal tree-based model to decipher patterns within clinical data derived from a population-based database in Taiwan. The disease progression was portrayed as branched trajectories, each path representing a series of distinct stages. Each stage embodied the cumulative occurrence of co-existing diseases, depicted as nodes on the tree, with edges symbolizing potential transitions between these linked nodes. Our model identified eight distinct ALS patient trajectories, unveiling unique patterns of disease associations at various stages of progression. These patterns may suggest underlying disease mechanisms or risk factors. This research re-conceptualizes ALS progression as a migration through diverse stages, instead of the perspective of a sequence of isolated events. This new approach illuminates patterns of disease association across different progression phases. The insights obtained from this study hold the potential to inform doctors regarding the development of personalized treatment strategies, ultimately enhancing patient prognosis and quality of life.

摘要

肌萎缩侧索硬化症(ALS)的多面性和快速进展给我们理解其演变以及与合并症的相互作用带来了相当大的挑战。本研究旨在阐明ALS进展的时间动态及其与相关疾病的相互作用。我们采用了一种基于主树的模型来解读源自台湾一个基于人群的数据库的临床数据中的模式。疾病进展被描绘为分支轨迹,每条路径代表一系列不同的阶段。每个阶段体现了共存疾病的累积发生情况,在树上被描绘为节点,边则象征着这些相连节点之间的潜在转变。我们的模型识别出了八种不同的ALS患者轨迹,揭示了疾病进展不同阶段独特的疾病关联模式。这些模式可能暗示潜在的疾病机制或风险因素。这项研究将ALS进展重新概念化为经历不同阶段的过程,而非一系列孤立事件的观点。这种新方法阐明了不同进展阶段的疾病关联模式。本研究获得的见解有可能为医生制定个性化治疗策略提供参考,最终改善患者预后和生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7670/10604752/cd768a9ff85d/biomedicines-11-02629-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验