Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany.
Würzburg Fabry Center for Interdisciplinary Therapy (FAZIT), University Hospital of Würzburg, 97080 Würzburg, Germany.
Int J Mol Sci. 2023 Oct 21;24(20):15422. doi: 10.3390/ijms242015422.
Fabry disease (FD) is caused by α-galactosidase A (AGAL) enzyme deficiency, leading to globotriaosylceramide accumulation (Gb3) in several cell types. Pain is one of the pathophysiologically incompletely understood symptoms in FD patients. Previous data suggest an involvement of hypoxia and mitochondriopathy in FD pain development at dorsal root ganglion (DRG) level. Using immunofluorescence and quantitative real-time polymerase chain reaction (qRT PCR), we investigated patient-derived endothelial cells (EC) and DRG tissue of the knockout (KO) mouse model of FD. We address the question of whether hypoxia and mitochondriopathy contribute to FD pain pathophysiology. In EC of FD patients (P1 with pain and, P2 without pain), we found dysregulated protein expression of hypoxia-inducible factors (HIF) 1a and HIF2 compared to the control EC ( < 0.01). The protein expression of the HIF downstream target vascular endothelial growth factor A (VEGFA, < 0.01) was reduced and tube formation was hampered in the P1 EC compared to the healthy EC ( < 0.05). Tube formation ability was rescued by applying transforming growth factor beta (TGFβ) inhibitor SB-431542. Additionally, we found dysregulated mitochondrial fusion/fission characteristics in the P1 and P2 EC ( < 0.01) and depolarized mitochondrial membrane potential in P2 compared to control EC ( < 0.05). Complementary to human data, we found upregulated hypoxia-associated genes in the DRG of old KO mice compared to WT DRG ( < 0.01). At protein level, nuclear HIF1a was higher in the DRG neurons of old KO mice compared to WT mice ( < 0.01). Further, the HIF1a downstream target CA9 was upregulated in the DRG of old KO mice compared to WT DRG ( < 0.01). Similar to human EC, we found a reduction in the vascular characteristics in KO DRG compared to WT ( < 0.05). We demonstrate increased hypoxia, impaired vascular properties, and mitochondrial dysfunction in human FD EC and complementarily at the KO mouse DRG level. Our data support the hypothesis that hypoxia and mitochondriopathy in FD EC and KO DRG may contribute to FD pain development.
法布里病(FD)是由α-半乳糖苷酶 A(AGAL)酶缺乏引起的,导致几种细胞类型中糖鞘脂积累(Gb3)。疼痛是 FD 患者病理生理学上尚未完全理解的症状之一。先前的数据表明,缺氧和线粒体病在背根神经节(DRG)水平的 FD 疼痛发展中起作用。使用免疫荧光和定量实时聚合酶链反应(qRT-PCR),我们研究了 FD 患者的内皮细胞(EC)和 KO 小鼠模型的 DRG 组织。我们提出了这样一个问题,即缺氧和线粒体病是否有助于 FD 疼痛的病理生理学。在 FD 患者的 EC(有疼痛的 P1 和无疼痛的 P2)中,与对照 EC 相比,缺氧诱导因子(HIF)1a 和 HIF2 的蛋白表达失调( < 0.01)。HIF 下游靶标血管内皮生长因子 A(VEGFA, < 0.01)的蛋白表达减少,与健康 EC 相比,P1 EC 的管形成受到阻碍( < 0.05)。应用转化生长因子β(TGFβ)抑制剂 SB-431542 可挽救管形成能力。此外,我们发现 P1 和 P2 EC 中存在失调的线粒体融合/分裂特征( < 0.01),与对照 EC 相比,P2 中的线粒体膜电位去极化( < 0.05)。与人类数据互补的是,我们发现与 WT DRG 相比,老年 KO 小鼠的 DRG 中上调了与缺氧相关的基因( < 0.01)。在蛋白水平上,与 WT 小鼠相比,老年 KO 小鼠的 DRG 神经元中的核 HIF1a 更高( < 0.01)。此外,与 WT DRG 相比,老年 KO 小鼠的 DRG 中 HIF1a 的下游靶标 CA9 上调( < 0.01)。与人类 EC 相似,我们发现与 WT 相比,KO DRG 的血管特征减少( < 0.05)。我们证明了在人类 FD EC 中以及在 KO 小鼠 DRG 中观察到缺氧增加、血管特性受损和线粒体功能障碍。我们的数据支持这样一种假设,即在 FD EC 和 KO DRG 中缺氧和线粒体病可能有助于 FD 疼痛的发展。