Suppr超能文献

IbpA 的功能受其球形-纤维状四级结构的动态重排控制。

The Functionality of IbpA from Is Governed by Dynamic Rearrangement of Its Globular-Fibrillar Quaternary Structure.

机构信息

Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia.

Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.

出版信息

Int J Mol Sci. 2023 Oct 22;24(20):15445. doi: 10.3390/ijms242015445.

Abstract

Small heat shock proteins (sHSPs) represent a first line of stress defense in many bacteria. The primary function of these molecular chaperones involves preventing irreversible protein denaturation and aggregation. In , fibrillar IbpA binds unfolded proteins and keeps them in a folding-competent state. Further, its structural homologue IbpB induces the transition of IbpA to globules, thereby facilitating the substrate transfer to the HSP70-HSP100 system for refolding. The phytopathogenic possesses only a single sHSP, IbpA. Here, we demonstrate non-trivial features of the function and regulation of the chaperone-like activity of IbpA according to its interaction with other components of the mycoplasma multi-chaperone network. Our results show that the efficiency of the multi-chaperone system is driven with the ability of IbpA to form both globular and fibrillar structures, thus combining functions of both IbpA and IbpB when transferring the substrate proteins to the HSP70-HSP100 system. In contrast to IbpA and IbpB, IbpA appears as an sHSP, in which the competition between the N- and C-terminal domains regulates the shift of the protein quaternary structure between a fibrillar and globular form, thus representing a molecular mechanism of its functional regulation. While the C-terminus of IbpA is responsible for fibrils formation and substrate capture, the N-terminus seems to have a similar function to IbpB through facilitating further substrate protein disaggregation using HSP70. Moreover, our results indicate that prior to the final disaggregation process, IbpA can directly transfer the substrate to HSP100, thereby representing an alternative mechanism in the HSP interaction network.

摘要

小分子热休克蛋白(sHSPs)在许多细菌中代表着第一道应激防御。这些分子伴侣的主要功能涉及防止蛋白质不可逆变性和聚集。在 中,纤维状 IbpA 结合未折叠的蛋白质并使其处于折叠状态。此外,其结构同源物 IbpB 诱导 IbpA 向球蛋白转变,从而促进底物向 HSP70-HSP100 系统转移以进行重折叠。植物病原体 只含有一种 sHSP,即 IbpA。在这里,我们根据其与支原体多伴侣网络中其他成分的相互作用,展示了 IbpA 伴侣样活性的功能和调节的非平凡特征。我们的结果表明, 多伴侣系统的效率取决于 IbpA 形成球状和纤维状结构的能力,从而在将底物蛋白转移到 HSP70-HSP100 系统时结合了 IbpA 和 IbpB 的功能。与 IbpA 和 IbpB 不同,IbpA 表现为 sHSP,其中 N-和 C-末端结构域之间的竞争调节了蛋白质四级结构在纤维状和球状之间的转变,从而代表了其功能调节的分子机制。虽然 IbpA 的 C 端负责纤维的形成和底物的捕获,但 N 端似乎通过使用 HSP70 促进进一步的底物蛋白解聚而具有类似于 IbpB 的功能。此外,我们的结果表明,在最终解聚过程之前,IbpA 可以直接将底物转移至 HSP100,从而代表 HSP 相互作用网络中的替代机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/946e/10607609/dd4a4aa27713/ijms-24-15445-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验