Suppr超能文献

结合人工神经网络和多元线性回归利用导电缝纫图案预测电阻

Prediction of Electrical Resistance with Conductive Sewing Patterns by Combining Artificial Neural Networks and Multiple Linear Regressions.

作者信息

Jang JunHyeok, Kim JooYong

机构信息

Department of Smart Wearable Engineering, Soongsil University, Seoul 06978, Republic of Korea.

Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea.

出版信息

Polymers (Basel). 2023 Oct 18;15(20):4138. doi: 10.3390/polym15204138.

Abstract

This study aims to estimate the impact of sewing thread patterns on changes in the resistance of conductive yarns coated with silver paste. Firstly, the structure of the conductive yarns was examined, and various variations in the length and angle of individual sewing stitches were observed and analyzed through experiments. The results revealed that as the length of an individual stitch decreased, the width of the conductive yarn increased. Additionally, variations in the stitch angle resulted in different resistance values in the conductive yarn. These findings provide essential information for optimizing sewing patterns and designing components. Secondly, the comparison between models using multiple linear regression analysis and sewing neural networks was included to show optimized resistance prediction. The multiple linear regression analysis indicated that the stitch length and angle were significant variables affecting the resistance of the conductive thread. The artificial neural network model results can be valuable for optimizing sewing patterns and controlling resistance in various applications that utilize conductive thread. In addition, understanding the resistance variation in conductive thread according to sewing patterns and using optimized models to enhance component performance provides opportunities for innovation and progress. This research is necessary for the textile industry and materials engineering fields and holds high potential for practical applications in industrial settings.

摘要

本研究旨在评估缝纫线图案对涂有银浆的导电纱线电阻变化的影响。首先,对导电纱线的结构进行了检查,并通过实验观察和分析了单个缝纫针脚长度和角度的各种变化。结果表明,随着单个针脚长度的减小,导电纱线的宽度增加。此外,针脚角度的变化导致导电纱线的电阻值不同。这些发现为优化缝纫图案和设计组件提供了重要信息。其次,纳入了使用多元线性回归分析的模型与缝纫神经网络之间的比较,以展示优化的电阻预测。多元线性回归分析表明,针脚长度和角度是影响导电线电阻的重要变量。人工神经网络模型结果对于优化缝纫图案和控制利用导电线的各种应用中的电阻可能很有价值。此外,了解根据缝纫图案的导电线电阻变化并使用优化模型来提高组件性能,为创新和进步提供了机会。这项研究对于纺织工业和材料工程领域是必要的,并且在工业环境中有很高的实际应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ae/10610855/fe4482037b54/polymers-15-04138-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验