Suppr超能文献

用于智能电网中窃电检测的混合卷积神经网络-Transformer网络

Hybrid CNN-Transformer Network for Electricity Theft Detection in Smart Grids.

作者信息

Bai Yu, Sun Haitong, Zhang Lili, Wu Haoqi

机构信息

School of Electronical and Information Engineering, Shenyang Aerospace University, Shenyang 110136, China.

出版信息

Sensors (Basel). 2023 Oct 12;23(20):8405. doi: 10.3390/s23208405.

Abstract

Illicitly obtaining electricity, commonly referred to as electricity theft, is a prominent contributor to power loss. In recent years, there has been growing recognition of the significance of neural network models in electrical theft detection (ETD). Nevertheless, the existing approaches have a restricted capacity to acquire profound characteristics, posing a persistent challenge in reliably and effectively detecting anomalies in power consumption data. Hence, the present study puts forth a hybrid model that amalgamates a convolutional neural network (CNN) and a transformer network as a means to tackle this concern. The CNN model with a dual-scale dual-branch (DSDB) structure incorporates inter- and intra-periodic convolutional blocks to conduct shallow feature extraction of sequences from varying dimensions. This enables the model to capture multi-scale features in a local-to-global fashion. The transformer module with Gaussian weighting (GWT) effectively captures the overall temporal dependencies present in the electricity consumption data, enabling the extraction of sequence features at a deep level. Numerous studies have demonstrated that the proposed method exhibits enhanced efficiency in feature extraction, yielding high F1 scores and AUC values, while also exhibiting notable robustness.

摘要

非法获取电力,通常称为窃电,是电力损耗的一个重要原因。近年来,神经网络模型在窃电检测(ETD)中的重要性日益得到认可。然而,现有方法获取深度特征的能力有限,在可靠有效地检测功耗数据中的异常方面一直存在挑战。因此,本研究提出了一种混合模型,将卷积神经网络(CNN)和Transformer网络结合起来,以解决这一问题。具有双尺度双分支(DSDB)结构的CNN模型包含周期内和周期间卷积块,对不同维度的序列进行浅层特征提取。这使得模型能够以从局部到全局的方式捕获多尺度特征。具有高斯加权(GWT)的Transformer模块有效地捕获了功耗数据中存在的整体时间依赖性,能够在深度上提取序列特征。许多研究表明,所提出的方法在特征提取方面具有更高的效率,产生高F1分数和AUC值,同时还具有显著的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4e7/10610588/21e6058a5c3a/sensors-23-08405-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验