Suppr超能文献

在工业物联网(IIoT)中,使用自然语言处理方法进行自动机器对机器(M2M)翻译的深度本体对齐

Deep Ontology Alignment Using a Natural Language Processing Approach for Automatic M2M Translation in IIoT.

作者信息

Javed Saleha, Usman Muhammad, Sandin Fredrik, Liwicki Marcus, Mokayed Hamam

机构信息

Machine Learning, Department of Computer Science, Electrical and Space Engineering, Lulea University of Technology, 97187 Lulea, Sweden.

Department of Computer Science, National University of Computer and Emerging Sciences, Chiniot-Faisalabad Campus, Chiniot 35400, Pakistan.

出版信息

Sensors (Basel). 2023 Oct 12;23(20):8427. doi: 10.3390/s23208427.

Abstract

The technical capabilities of modern Industry 4.0 and Industry 5.0 are vast and growing exponentially daily. The present-day Industrial Internet of Things (IIoT) combines manifold underlying technologies that require real-time interconnection and communication among heterogeneous devices. Smart cities are established with sophisticated designs and control of seamless machine-to-machine (M2M) communication, to optimize resources, costs, performance, and energy distributions. All the sensory devices within a building interact to maintain a sustainable climate for residents and intuitively optimize the energy distribution to optimize energy production. However, this encompasses quite a few challenges for devices that lack a compatible and interoperable design. The conventional solutions are restricted to limited domains or rely on engineers designing and deploying translators for each pair of ontologies. This is a costly process in terms of engineering effort and computational resources. An issue persists that a new device with a different ontology must be integrated into an existing IoT network. We propose a self-learning model that can determine the taxonomy of devices given their ontological meta-data and structural information. The model finds matches between two distinct ontologies using a natural language processing (NLP) approach to learn linguistic contexts. Then, by visualizing the ontological network as a knowledge graph, it is possible to learn the structure of the meta-data and understand the device's message formulation. Finally, the model can align entities of ontological graphs that are similar in context and structure.Furthermore, the model performs dynamic M2M translation without requiring extra engineering or hardware resources.

摘要

现代工业4.0和工业5.0的技术能力十分强大,且每天都在呈指数级增长。当今的工业物联网(IIoT)结合了多种底层技术,这些技术要求异构设备之间进行实时互连和通信。智慧城市通过复杂的设计和无缝的机器对机器(M2M)通信控制得以建立,以优化资源、成本、性能和能源分配。建筑物内的所有传感设备相互作用,为居民维持可持续的环境,并直观地优化能源分配以优化能源生产。然而,对于缺乏兼容和互操作设计的设备来说,这带来了不少挑战。传统解决方案局限于有限的领域,或者依赖工程师为每对本体设计和部署翻译器。从工程工作量和计算资源方面来看,这是一个成本高昂的过程。一个问题仍然存在,即具有不同本体的新设备必须集成到现有的物联网网络中。我们提出一种自学习模型,该模型可以根据设备的本体元数据和结构信息确定设备的分类法。该模型使用自然语言处理(NLP)方法来学习语言上下文,从而在两个不同的本体之间找到匹配项。然后,通过将本体网络可视化为知识图谱,就有可能学习元数据的结构并理解设备的消息表述。最后,该模型可以对齐上下文和结构相似的本体图实体。此外,该模型无需额外的工程或硬件资源即可执行动态M2M翻译。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ca/10610665/27e7d2694462/sensors-23-08427-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验