Suppr超能文献

基于机器学习的 SCADA 增强型工业物联网网络中的自动混合访问控制。

Automatic Hybrid Access Control in SCADA-Enabled IIoT Networks Using Machine Learning.

机构信息

Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad, Chiniot-Faisalabad Campus, Chiniot 35400, Pakistan.

AI and Data Science Department, FAST School of Computing, National University of Computer and Emerging Sciences, Islamabad, Islamabad Campus, Islamabad 44000, Pakistan.

出版信息

Sensors (Basel). 2023 Apr 12;23(8):3931. doi: 10.3390/s23083931.

Abstract

The recent advancements in the Internet of Things have made it converge towards critical infrastructure automation, opening a new paradigm referred to as the Industrial Internet of Things (IIoT). In the IIoT, different connected devices can send huge amounts of data to other devices back and forth for a better decision-making process. In such use cases, the role of supervisory control and data acquisition (SCADA) has been studied by many researchers in recent years for robust supervisory control management. Nevertheless, for better sustainability of these applications, reliable data exchange is crucial in this domain. To ensure the privacy and integrity of the data shared between the connected devices, access control can be used as the front-line security mechanism for these systems. However, the role engineering and assignment propagation in access control is still a tedious process as its manually performed by network administrators. In this study, we explored the potential of supervised machine learning to automate role engineering for fine-grained access control in Industrial Internet of Things (IIoT) settings. We propose a mapping framework to employ a fine-tuned multilayer feedforward artificial neural network (ANN) and extreme learning machine (ELM) for role engineering in the SCADA-enabled IIoT environment to ensure privacy and user access rights to resources. For the application of machine learning, a thorough comparison between these two algorithms is also presented in terms of their effectiveness and performance. Extensive experiments demonstrated the significant performance of the proposed scheme, which is promising for future research to automate the role assignment in the IIoT domain.

摘要

近年来,物联网的发展使其趋向于关键基础设施自动化,开创了一个新的范例,即工业物联网(IIoT)。在 IIoT 中,不同的连接设备可以来回发送大量数据,以实现更好的决策过程。在这种情况下,监督控制和数据采集(SCADA)的作用近年来已经被许多研究人员研究,以实现强大的监督控制管理。然而,为了更好地实现这些应用的可持续性,可靠的数据交换在这个领域至关重要。为了确保连接设备之间共享数据的隐私和完整性,可以使用访问控制作为这些系统的前沿安全机制。然而,访问控制中的角色工程和分配传播仍然是一个繁琐的过程,因为它是由网络管理员手动执行的。在这项研究中,我们探索了监督机器学习在自动化工业物联网(IIoT)环境中的细粒度访问控制的角色工程中的潜力。我们提出了一种映射框架,使用微调的多层前馈人工神经网络(ANN)和极限学习机(ELM)来进行 SCADA 支持的 IIoT 环境中的角色工程,以确保隐私和用户对资源的访问权限。对于机器学习的应用,还在这两种算法的有效性和性能方面进行了详细的比较。广泛的实验证明了所提出方案的显著性能,这为未来在 IIoT 领域自动化角色分配的研究提供了希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d3e/10146338/76d12d369bbc/sensors-23-03931-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验