Xiao Xin, Feng Xinlong
College of Mathematics and Systems Science, Xinjiang University, Urumqi 830046, China.
Sensors (Basel). 2023 Oct 13;23(20):8439. doi: 10.3390/s23208439.
Multi-object pedestrian tracking plays a crucial role in autonomous driving systems, enabling accurate perception of the surrounding environment. In this paper, we propose a comprehensive approach for pedestrian tracking, combining the improved YOLOv8 object detection algorithm with the OC-SORT tracking algorithm. First, we train the improved YOLOv8 model on the Crowdhuman dataset for accurate pedestrian detection. The integration of advanced techniques such as softNMS, GhostConv, and C3Ghost Modules results in a remarkable precision increase of 3.38% and an mAP@0.5:0.95 increase of 3.07%. Furthermore, we achieve a significant reduction of 39.98% in parameters, leading to a 37.1% reduction in model size. These improvements contribute to more efficient and lightweight pedestrian detection. Next, we apply our enhanced YOLOv8 model for pedestrian tracking on the MOT17 and MOT20 datasets. On the MOT17 dataset, we achieve outstanding results with the highest HOTA score reaching 49.92% and the highest MOTA score reaching 56.55%. Similarly, on the MOT20 dataset, our approach demonstrates exceptional performance, achieving a peak HOTA score of 48.326% and a peak MOTA score of 61.077%. These results validate the effectiveness of our approach in challenging real-world tracking scenarios.
多目标行人跟踪在自动驾驶系统中起着至关重要的作用,能够准确感知周围环境。在本文中,我们提出了一种综合的行人跟踪方法,将改进的YOLOv8目标检测算法与OC-SORT跟踪算法相结合。首先,我们在Crowdhuman数据集上训练改进的YOLOv8模型,以实现准确的行人检测。softNMS、GhostConv和C3Ghost模块等先进技术的集成使精度显著提高了3.38%,mAP@0.5:0.95提高了3.07%。此外,我们的参数显著减少了39.98%,模型大小减少了37.1%。这些改进有助于实现更高效、更轻量级的行人检测。接下来,我们将增强的YOLOv8模型应用于MOT17和MOT20数据集上的行人跟踪。在MOT17数据集上,我们取得了出色的结果,最高HOTA分数达到49.92%,最高MOTA分数达到56.55%。同样,在MOT20数据集上,我们的方法表现卓越,峰值HOTA分数为48.326%,峰值MOTA分数为61.077%。这些结果验证了我们的方法在具有挑战性的真实世界跟踪场景中的有效性。