Suppr超能文献

基于两阶段自适应伽马变换和深度神经网络的主动热成像糖尿病足底分割。

Diabetic Plantar Foot Segmentation in Active Thermography Using a Two-Stage Adaptive Gamma Transform and a Deep Neural Network.

机构信息

College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518000, China.

College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, China.

出版信息

Sensors (Basel). 2023 Oct 17;23(20):8511. doi: 10.3390/s23208511.

Abstract

Pathological conditions in diabetic feet cause surface temperature variations, which can be captured quantitatively using infrared thermography. Thermal images captured during recovery of diabetic feet after active cooling may reveal richer information than those from passive thermography, but diseased foot regions may exhibit very small temperature differences compared with the surrounding area, complicating plantar foot segmentation in such cold-stressed active thermography. In this study, we investigate new plantar foot segmentation methods for thermal images obtained via cold-stressed active thermography without the complementary information from color or depth channels. To better deal with the temporal variations in thermal image contrast when planar feet are recovering from cold immersion, we propose an image pre-processing method using a two-stage adaptive gamma transform to alleviate the impact of such contrast variations. To improve upon existing deep neural networks for segmenting planar feet from cold-stressed infrared thermograms, a new deep neural network, the Plantar Foot Segmentation Network (PFSNet), is proposed to better extract foot contours. It combines the fundamental U-shaped network structure, a multi-scale feature extraction module, and a convolutional block attention module with a feature fusion network. The PFSNet, in combination with the two-stage adaptive gamma transform, outperforms multiple existing deep neural networks in plantar foot segmentation for single-channel infrared images from cold-stressed infrared thermography, achieving an accuracy of 97.3% and 95.4% as measured by Intersection over Union (IOU) and Dice Similarity Coefficient (DSC) respectively.

摘要

糖尿病足的病理状况会导致表面温度变化,这些变化可以通过红外热成像进行定量捕捉。在对糖尿病足进行主动冷却恢复后,所捕获的热图像可能会比被动热成像揭示更丰富的信息,但与周围区域相比,患病足部区域的温度差异可能非常小,这使得在这种冷应激主动热成像中对足底进行分割变得复杂。在这项研究中,我们研究了新的足底分割方法,用于从没有颜色或深度通道补充信息的冷应激主动热成像中获取的热图像。为了更好地处理平面足部从冷浸中恢复时热图像对比度的时间变化,我们提出了一种使用两阶段自适应伽马变换的图像预处理方法,以减轻这种对比度变化的影响。为了改进现有的用于从冷应激红外热图像中分割平面足部的深度神经网络,提出了一种新的深度神经网络,即足底分割网络 (PFSNet),用于更好地提取足部轮廓。它结合了基本的 U 形网络结构、多尺度特征提取模块和卷积块注意力模块与特征融合网络。PFSNet 与两阶段自适应伽马变换相结合,在从冷应激红外热成像的单通道红外图像中进行足底分割方面优于多个现有的深度神经网络,在交并比 (IOU) 和骰子相似性系数 (DSC) 方面的准确率分别达到 97.3%和 95.4%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54ce/10610917/e8854c37a34c/sensors-23-08511-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验