Suppr超能文献

右删失事件数据的赢-输参数,应用于复发性事件。

Win-loss parameters for right-censored event data, with application to recurrent events.

机构信息

Section for Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark.

出版信息

Stat Med. 2023 Dec 30;42(30):5723-5735. doi: 10.1002/sim.9937. Epub 2023 Oct 28.

Abstract

The win ratio has become a popular method for comparing multiple event data between two groups in clinical cohort studies. The win ratio compares the event data in prioritized order, where the first prioritized event is death and a typical example for the second prioritized event is hospitalization. Literature is sparse on inference for win and loss parameters, including the win ratio, for censored event data. Inference for two prioritized censored event times has been developed for independent right-censoring. Many clinical studies include recurrent event data such as hospitalizations. In this article, we suggest inference for win-loss parameters for death and a recurrent event outcome under independent right-censoring. The small sample properties of the proposed method are studied in a simulation study showing that the variance formula is accurate even for small samples. The method is applied on a data set from a randomized clinical trial.

摘要

胜率已成为临床队列研究中比较两组多项事件数据的一种常用方法。胜率按优先级比较事件数据,优先级最高的事件是死亡,优先级次高的事件通常是住院。关于删失事件数据的胜率和损失参数的推断文献很少。对于独立右删失,已经开发出了用于两个优先级删失事件时间的推断方法。许多临床研究包括住院等复发性事件数据。在本文中,我们建议在独立右删失下对死亡和复发性事件结局的胜负参数进行推断。模拟研究研究了所提出方法的小样本特性,结果表明,即使对于小样本,方差公式也是准确的。该方法应用于一项随机临床试验数据集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验