Suppr超能文献

Exploration of efficacy, cellular responses, and safety profile of novel 9-(3-Pyridyl) noscapine derivatives as promising anticancer candidates.

作者信息

Dash Shruti Gamya, Kantevari Srinivas, Kumar Naik Pradeep

机构信息

Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, India.

Fluoro and agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.

出版信息

J Biomol Struct Dyn. 2024;42(23):13312-13324. doi: 10.1080/07391102.2023.2275177. Epub 2023 Oct 28.

Abstract

This study presented a novel derivative of the antitussive compound noscapine, named 9-3-Pyridyl noscapine (PYNos), to enhance its anticancer potential. Through in silico investigations, PYNos exhibited strong interactions with microtubules, inhibiting cancer cell proliferation both alone and in combination with docetaxel. Docking scores highlighted the affinity of PYNos -5.67 kcal/mol and docetaxel -4.94 kcal/mol to microtubules. When docked with tubulin-DOX co-complex, PYNos displayed a synergistic score of -8.99 kcal/mol. MTT assays on MCF-7 breast cancer cells showed PYNos IC50 values of 11.0 µM (48 h) and 8.4 µM (72 h), while docetaxel had three orders of magnitude lower IC50 values: 0.028 µM (48 h) and 0.015 µM (72 h). Combining PYNos (25 µM) and docetaxel (0.01 µM) reduced proliferation by 50% at both time points. Isobologram analysis confirmed strong antiproliferative synergy (sum FIC <1) at 48 and 72 h. Our comprehensive evaluation encompassing apoptosis and cell cycle arrest patterns further validated the synergistic advantages of this combination. In a xenograft mice model using MCF-7 cells, the PYNos-docetaxel co-treatment resulted in significant tumor regression, showcasing promising induction of apoptosis while mitigating docetaxel-associated toxicity. In summary, our findings underscore the substantial microtubule interactions facilitated by 9-3-Pyridyl noscapine, revealing its synergistic potential with docetaxel and establishing a solid foundation for advancing cancer therapeutic strategies.Communicated by Ramaswamy H. Sarma.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验