Suppr超能文献

Sesbania cannabina allotetraploid 基因组的端粒到端粒测序揭示了转座子驱动的亚基因组分化和碱性胁迫耐受的机制。

Telomere-to-telomere genome of the allotetraploid legume Sesbania cannabina reveals transposon-driven subgenome divergence and mechanisms of alkaline stress tolerance.

机构信息

State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.

Hainan Yazhou Bay Seed Lab, Sanya, 572025, China.

出版信息

Sci China Life Sci. 2024 Jan;67(1):149-160. doi: 10.1007/s11427-023-2463-y. Epub 2023 Oct 25.

Abstract

Alkaline soils pose an increasing problem for agriculture worldwide, but using stress-tolerant plants as green manure can improve marginal land. Here, we show that the legume Sesbania cannabina is very tolerant to alkaline conditions and, when used as a green manure, substantially improves alkaline soil. To understand genome evolution and the mechanisms of stress tolerance in this allotetraploid legume, we generated the first telomere-to-telomere genome assembly of S. cannabina spanning ∼2,087 Mb. The assembly included all centromeric regions, which contain centromeric satellite repeats, and complete chromosome ends with telomeric characteristics. Further genome analysis distinguished A and B subgenomes, which diverged approximately 7.9 million years ago. Comparative genomic analysis revealed that the chromosome homoeologs underwent large-scale inversion events (>10 Mb) and a significant, transposon-driven size expansion of the chromosome 5A homoeolog. We further identified four specific alkali-induced phosphate transporter genes in S. cannabina; these may function in alkali tolerance by relieving the deficiency in available phosphorus in alkaline soil. Our work highlights the significance of S. cannabina as a green tool to improve marginal lands and sheds light on subgenome evolution and adaptation to alkaline soils.

摘要

碱性土壤对全球农业构成的问题日益严重,但利用耐胁迫植物作为绿肥可以改良边际土地。在这里,我们表明,豆科植物田菁对碱性条件具有很强的耐受性,并且作为绿肥使用时,可显著改善碱性土壤。为了了解这种异源四倍体豆科植物的基因组进化和耐胁迫机制,我们生成了田菁的首个端粒到端粒全基因组组装,跨度约为 2087Mb。该组装包括所有着丝粒区域,其中包含着丝粒卫星重复序列,以及具有端粒特征的完整染色体末端。进一步的基因组分析区分了 A 和 B 亚基因组,它们大约在 790 万年前分化。比较基因组分析表明,染色体同源物经历了大规模的倒位事件(>10Mb),以及染色体 5A 同源物的转座子驱动的显著大小扩张。我们还在田菁中鉴定了四个特定的碱诱导磷酸盐转运基因;这些基因可能通过缓解碱性土壤中可用磷的缺乏来发挥耐碱作用。我们的工作强调了田菁作为改良边际土地的绿色工具的重要性,并揭示了亚基因组进化和对碱性土壤的适应机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验