Suppr超能文献

提高头部 CT 血管造影中小颅内血管的显示效果:深度学习重建与混合迭代重建的对比分析。

Improving the depiction of small intracranial vessels in head computed tomography angiography: a comparative analysis of deep learning reconstruction and hybrid iterative reconstruction.

机构信息

Department of Radiological Technology, Kurashiki Central Hospital, 1-1-1, Miwa, Kurashiki, Okayama, 710-8602, Japan.

Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Niigata University, 2-746 Asahimachi-Dori, Chuo-Ku, Niigata, Niigata, 951-8518, Japan.

出版信息

Radiol Phys Technol. 2024 Mar;17(1):329-336. doi: 10.1007/s12194-023-00749-8. Epub 2023 Oct 28.

Abstract

This study aimed to evaluate the ability of deep learning reconstruction (DLR) compared to that of hybrid iterative reconstruction (IR) to depict small vessels on computed tomography (CT). DLR and two types of hybrid IRs were used for image reconstruction. The target vessels were the basilar artery (BA), superior cerebellar artery (SCA), anterior inferior cerebellar artery (AICA), and posterior inferior cerebellar artery (PICA). The peak value, ΔCT values defined as the difference between the peak value and background, and full width at half maximum (FWHM), were obtained from the profile curves. In all target vessels, the peak and ΔCT values of DLR were significantly higher than those of the two types of hybrid IR (p < 0.001). Compared to that associated with hybrid IR, the FWHM of DLR was significantly lower in the SCA (p < 0.001), AICA (p < 0.001), and PICA (p < 0.001). In conclusion, DLR has the potential to improve visualization of small vessels.

摘要

本研究旨在评估深度学习重建(DLR)与混合迭代重建(IR)在 CT 上显示小血管的能力。DLR 和两种类型的混合 IR 用于图像重建。目标血管为基底动脉(BA)、小脑上动脉(SCA)、小脑前下动脉(AICA)和小脑后下动脉(PICA)。从轮廓曲线中获取峰值、定义为峰值与背景之差的 ΔCT 值以及半最大值全宽(FWHM)。在所有目标血管中,DLR 的峰值和 ΔCT 值均显著高于两种混合 IR(p<0.001)。与混合 IR 相比,DLR 的 SCA(p<0.001)、AICA(p<0.001)和 PICA(p<0.001)的 FWHM 显著降低。总之,DLR 有潜力改善小血管的可视化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验