基于深度学习的超分辨率重建在冠状动脉 CT 血管造影中的应用改善了图像质量。
Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography.
机构信息
Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
Department of Central Radiology, Kumamoto University Hospital, Kumamoto, Japan.
出版信息
Eur Radiol. 2023 Dec;33(12):8488-8500. doi: 10.1007/s00330-023-09888-3. Epub 2023 Jul 11.
OBJECTIVES
To evaluate the effect of super-resolution deep-learning-based reconstruction (SR-DLR) on the image quality of coronary CT angiography (CCTA).
METHODS
Forty-one patients who underwent CCTA using a 320-row scanner were retrospectively included. Images were reconstructed with hybrid (HIR), model-based iterative reconstruction (MBIR), normal-resolution deep-learning-based reconstruction (NR-DLR), and SR-DLR algorithms. For each image series, image noise, and contrast-to-noise ratio (CNR) at the left main trunk, right coronary artery, left anterior descending artery, and left circumflex artery were quantified. Blooming artifacts from calcified plaques were measured. Image sharpness, noise magnitude, noise texture, edge smoothness, overall quality, and delineation of the coronary wall, calcified and noncalcified plaques, cardiac muscle, and valves were subjectively ranked on a 4-point scale (1, worst; 4, best). The quantitative parameters and subjective scores were compared among the four reconstructions. Task-based image quality was assessed with a physical evaluation phantom. The detectability index for the objects simulating the coronary lumen, calcified plaques, and noncalcified plaques was calculated from the noise power spectrum (NPS) and task-based transfer function (TTF).
RESULTS
SR-DLR yielded significantly lower image noise and blooming artifacts with higher CNR than HIR, MBIR, and NR-DLR (all p < 0.001). The best subjective scores for all the evaluation criteria were attained with SR-DLR, with significant differences from all other reconstructions (p < 0.001). In the phantom study, SR-DLR provided the highest NPS average frequency, TTF, and detectability for all task objects.
CONCLUSION
SR-DLR considerably improved the subjective and objective image qualities and object detectability of CCTA relative to HIR, MBIR, and NR-DLR algorithms.
CLINICAL RELEVANCE STATEMENT
The novel SR-DLR algorithm has the potential to facilitate accurate assessment of coronary artery disease on CCTA by providing excellent image quality in terms of spatial resolution, noise characteristics, and object detectability.
KEY POINTS
• SR-DLR designed for CCTA improved image sharpness, noise property, and delineation of cardiac structures with reduced blooming artifacts from calcified plaques relative to HIR, MBIR, and NR-DLR. • In the task-based image-quality assessments, SR-DLR yielded better spatial resolution, noise property, and detectability for objects simulating the coronary lumen, coronary calcifications, and noncalcified plaques than other reconstruction techniques. • The image reconstruction times of SR-DLR were shorter than those of MBIR, potentially serving as a novel standard-of-care reconstruction technique for CCTA performed on a 320-row CT scanner.
目的
评估基于超分辨率深度学习重建(SR-DLR)对冠状动脉 CT 血管造影(CCTA)图像质量的影响。
方法
回顾性纳入 41 名使用 320 排扫描仪进行 CCTA 的患者。使用混合(HIR)、基于模型的迭代重建(MBIR)、常规分辨率深度学习重建(NR-DLR)和 SR-DLR 算法对图像进行重建。对每个图像系列,在左主干、右冠状动脉、左前降支和左旋支测量图像噪声和对比噪声比(CNR)。测量钙化斑块的开花伪影。对冠状动脉壁、钙化和非钙化斑块、心肌和瓣膜的图像锐度、噪声幅度、噪声纹理、边缘平滑度、整体质量和描绘进行主观 4 分制评分(1,最差;4,最好)。比较四种重建的定量参数和主观评分。使用物理评估体模评估基于任务的图像质量。从噪声功率谱(NPS)和基于任务的传递函数(TTF)计算模拟冠状动脉管腔、钙化斑块和非钙化斑块的物体的检测指数。
结果
与 HIR、MBIR 和 NR-DLR 相比,SR-DLR 产生的图像噪声更低, blooming 伪影更小,CNR 更高(均 p<0.001)。SR-DLR 在所有评估标准中获得的主观评分均最佳,与其他所有重建方法均有显著差异(p<0.001)。在体模研究中,SR-DLR 为所有任务对象提供了最高的 NPS 平均频率、TTF 和检测能力。
结论
与 HIR、MBIR 和 NR-DLR 算法相比,SR-DLR 显著提高了 CCTA 的主观和客观图像质量以及物体检测能力。
临床相关性
新型 SR-DLR 算法具有通过提供在空间分辨率、噪声特性和物体检测方面的卓越图像质量,促进 CCTA 中冠状动脉疾病的准确评估的潜力。
关键点
与 HIR、MBIR 和 NR-DLR 相比,专为 CCTA 设计的 SR-DLR 可减少钙化斑块的 blooming 伪影,从而提高图像锐度、噪声特性和心脏结构的描绘。
在基于任务的图像质量评估中,与其他重建技术相比,SR-DLR 为模拟冠状动脉管腔、冠状动脉钙化和非钙化斑块的物体提供了更好的空间分辨率、噪声特性和检测能力。
SR-DLR 的图像重建时间短于 MBIR,可能成为 320 排 CT 扫描仪进行 CCTA 的新标准重建技术。