Mao Ya-Li, Chen Hu, Niu Chang, Li Zheng-Da, Yu Sixia, Fan Jingyun
Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China.
Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
Phys Rev Lett. 2023 Oct 13;131(15):150203. doi: 10.1103/PhysRevLett.131.150203.
Heisenberg-type measurement uncertainty relations (MURs) of two quantum observables are essential for contemporary research in quantum foundations and quantum information science. Going beyond, here we report the first experimental study of MUR of three quantum observables. We establish rigorously MURs for triplets of unbiased qubit observables as combined approximation errors lower bounded by an incompatibility measure, inspired by the proposal of Busch et al. [Phys. Rev. A 89, 012129 (2014)PLRAAN1050-294710.1103/PhysRevA.89.012129]. We develop a convex programming protocol to numerically find the exact value of the incompatibility measure and the optimal measurements. We propose a novel implementation of the optimal joint measurements and present several experimental demonstrations with a single-photon qubit. We stress that our method is universally applicable to the study of many qubit observables. Besides, we theoretically show that MURs for joint measurement can be attained by sequential measurements in two of our explored cases. We anticipate that this work may stimulate broad interests associated with Heisenberg's uncertainty principle in the case of multiple observables, enriching our understanding of quantum mechanics and inspiring innovative applications in quantum information science.
两个量子可观测量的海森堡型测量不确定关系(MURs)对于量子基础和量子信息科学的当代研究至关重要。更进一步,我们在此报告了对三个量子可观测量的MURs的首次实验研究。受布施等人[《物理评论A》89, 012129 (2014)PLRAAN1050 - 294710.1103/PhysRevA.89.012129]提议的启发,我们严格建立了无偏量子比特可观测量三元组的MURs,作为由不相容性度量下限界定的组合近似误差。我们开发了一种凸规划协议,以数值方式找到不相容性度量的精确值和最优测量。我们提出了最优联合测量的一种新颖实现方式,并展示了几个单光子量子比特的实验演示。我们强调我们的方法普遍适用于许多量子比特可观测量的研究。此外,我们从理论上表明,在我们探索的两种情况下,联合测量的MURs可以通过顺序测量来实现。我们预计这项工作可能会激发与多个可观测量情况下海森堡不确定性原理相关的广泛兴趣,丰富我们对量子力学的理解,并激发量子信息科学中的创新应用。