Busch Paul, Stevens Neil
University of York, York YO10 5DD, UK.
Phys Rev Lett. 2015 Feb 20;114(7):070402. doi: 10.1103/PhysRevLett.114.070402. Epub 2015 Feb 19.
The uncertainty principle being a cornerstone of quantum mechanics, it is surprising that, in nearly 90 years, there have been no direct tests of measurement uncertainty relations. This lacuna was due to the absence of two essential ingredients: appropriate measures of measurement error (and disturbance) and precise formulations of such relations that are universally valid and directly testable. We formulate two distinct forms of direct tests, based on different measures of error. We present a prototype protocol for a direct test of measurement uncertainty relations in terms of value deviation errors (hitherto considered nonfeasible), highlighting the lack of universality of these relations. This shows that the formulation of universal, directly testable measurement uncertainty relations for state-dependent error measures remains an important open problem. Recent experiments that were claimed to constitute invalidations of Heisenberg's error-disturbance relation, are shown to conform with the spirit of Heisenberg's principle if interpreted as direct tests of measurement uncertainty relations for error measures that quantify distances between observables.
不确定性原理是量子力学的基石,然而令人惊讶的是,在近90年的时间里,从未有过对测量不确定性关系的直接检验。这一空白是由于缺少两个关键要素:测量误差(和干扰)的合适度量,以及此类关系的精确表述,这些表述需普遍有效且可直接检验。我们基于不同的误差度量,制定了两种不同形式的直接检验方法。我们提出了一个以值偏差误差(此前认为不可行)对测量不确定性关系进行直接检验的原型方案,突出了这些关系缺乏普遍性。这表明,针对依赖于状态的误差度量,制定通用的、可直接检验的测量不确定性关系仍是一个重要的开放性问题。最近那些声称构成对海森堡误差 - 干扰关系证伪的实验,如果解释为对量化可观测量之间距离的误差度量的测量不确定性关系的直接检验,那么它们与海森堡原理的精神是相符的。