Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina S/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina S/n., Valladolid, 47011, Spain.
Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708, WE Wageningen, the Netherlands.
J Environ Manage. 2024 Jan 1;349:119362. doi: 10.1016/j.jenvman.2023.119362. Epub 2023 Oct 27.
Bioactive coatings are envisaged as a promising biotechnology to tackle the emerging problem of indoor air pollution. This solution could cope with the low concentrations, the wide range of compounds and the hydrophobicity of some indoor air VOCs, which are the most important bottlenecks regarding the implementation of conventional biotechnologies for indoor air treatment. A bioactive coating-based bioreactor was tested in this study for the abatement of different VOCs (n-hexane, toluene and α-pinene) at different empty bed residence times (EBRT) and inlet VOC concentrations. The performance of this reactor was compared with a conventional biofilm-based bioreactor operated with the same microbial inoculum. After an acclimation period, the bioactive coating-based bioreactor achieved abatements of over 50% for hexane, 80% for toluene and 70% for pinene at EBRTs of 112-56 s and inlet concentrations of 9-15 mg m. These results were about 25, 10 and 20% lower than the highest removals recorded in the biofilm-based bioreactor. Both bioreactors experienced a decrease in VOC abatement by ∼25% for hexane, 45% for toluene and 40% for pinene, after reducing the EBRT to 28 s. When inlet VOC concentrations were progressively reduced, VOC abatement efficiencies did not improve. This fact suggested that low EBRTs and low inlet VOCs concentration hindered indoor air pollutant abatement as a result of a limited mass transfer and bioavailability. Metagenomic analyses showed that process operation with toluene, hexane and pinene as the only carbon and energy sources favored an enriched bacterial community represented by the genera Devosia, Mesorhizobium, Sphingobacterium and Mycobacterium, regardless of the bioreactor configuration. Bioactive coatings were used in this work as packing material of a conventional bioreactor, achieving satisfactory VOC abatement similar to a conventional bioreactor.
生物活性涂层被视为一种有前途的生物技术,可以解决新兴的室内空气污染问题。这种解决方案可以应对低浓度、化合物种类繁多以及一些室内空气挥发性有机化合物的疏水性,这些都是常规生物技术应用于室内空气处理的最重要瓶颈。本研究中,基于生物活性涂层的生物反应器被用于不同挥发性有机化合物(正己烷、甲苯和α-蒎烯)在不同空床停留时间(EBRT)和入口挥发性有机化合物浓度下的降解。该反应器的性能与使用相同微生物接种物运行的传统生物膜基生物反应器进行了比较。经过驯化期后,在 EBRT 为 112-56 s 和入口浓度为 9-15 mg m 时,基于生物活性涂层的生物反应器对正己烷的去除率超过 50%,对甲苯的去除率超过 80%,对蒎烯的去除率超过 70%。这些结果比生物膜基生物反应器中记录的最高去除率低约 25%、10%和 20%。当将 EBRT 降低到 28 s 时,两种生物反应器对正己烷、甲苯和蒎烯的挥发性有机化合物去除率均降低了约 25%。当入口挥发性有机化合物浓度逐渐降低时,挥发性有机化合物去除效率没有提高。这一事实表明,低 EBRT 和低入口挥发性有机化合物浓度由于传质和生物利用度有限,阻碍了室内空气污染物的去除。宏基因组分析表明,以甲苯、正己烷和蒎烯作为唯一碳源和能源运行的过程有利于细菌群落的富集,代表属有 Devosia、Mesorhizobium、Sphingobacterium 和 Mycobacterium,而与生物反应器的构型无关。本工作中使用生物活性涂层作为传统生物反应器的填充材料,实现了令人满意的挥发性有机化合物去除率,与传统生物反应器相当。