Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0C5, Canada.
J Environ Manage. 2024 Jan 1;349:119257. doi: 10.1016/j.jenvman.2023.119257. Epub 2023 Oct 27.
Municipal biosolids contain organic and inorganic phosphorus (P) that could be recovered for reuse as P fertilizer. Inorganic P compounds include iron phosphates that precipitate and/or adsorbed phosphate ions as a consequence of soluble iron addition in order not to exceed total phosphorus (TP) emission limits. The inorganic orthophosphate (o-Pi) minerals within biosolids can have low solubilities. One P recovery strategy is to maximize the dissolution of o-Pi from biosolids for reuse. Dissolving iron phosphates in biosolids by adding sodium sulfide was assessed as an o-Pi dissolution strategy. 10 % w/w biosolids slurries with a total phosphorus (TP) of 0.97 ± 0.03 mmol P/dry g were mixed with sulfide/TP (S/TP) molar ratios from 0 to 4 for up to 96 h. The maximum o-Pi concentration (48 ± 7 mM, or 42 ± 6 % of TP) was obtained for 4 S/TP after 24 h at room temperature (RT). Iron concentrations measured by colorimetry (ferrozine) reduced from 0.6 ± 0.1 mM to less than 0.01 mM (S/TP > 1). X-ray diffraction and FTIR suggest that sulfide treatment preferentially dissolved amorphous o-Pi-containing solids, vivianite, and minerals with iron, aluminum, phosphate, sulfate, and other subsitutions. Poorly crystalline erdite (NaFeS ·2HO) was detected in products after S/TP treatment ratios ≥ 2. Incubation at RT or 37 °C did not affect the o-Pi concentrations for 0 or 4 S/TP over 47 h. Sulfide addition could also increase the risk of construction material corrosion, and reduce the efficiency of P recovery by precipitation. There are disadvantages to using sulfide to dissolve o-Pi from biosolids as a potential P recovery process.
城市生物固体中含有有机磷和无机磷(P),可以回收并重新用作磷肥。无机磷化合物包括铁磷酸盐,这些磷酸盐会因添加可溶性铁而沉淀和/或吸附磷酸根离子,以避免超过总磷(TP)的排放限值。生物固体中的无机正磷酸盐(o-Pi)矿物的溶解度可能较低。一种磷回收策略是最大限度地溶解生物固体中的 o-Pi 以实现再利用。通过添加硫化钠溶解生物固体中的铁磷酸盐被评估为一种 o-Pi 溶解策略。将总磷(TP)为 0.97±0.03mmol P/dry g 的 10%w/w 生物固体悬浮液与硫化物/TP(S/TP)摩尔比从 0 增加到 4,在室温(RT)下混合长达 96 小时。在 24 小时后,S/TP 为 4 时可获得最大的 o-Pi 浓度(48±7mM,或 TP 的 42±6%)。通过比色法(ferrozine)测量的铁浓度从 0.6±0.1mM 降低至小于 0.01mM(S/TP>1)。X 射线衍射和 FTIR 表明,硫化物处理优先溶解无定形的含有 o-Pi 的固体、蓝铁矿和含有铁、铝、磷酸盐、硫酸盐和其他取代物的矿物。在 S/TP 处理比≥2 后,在产物中检测到了结晶不良的水羟铁钠石(NaFeS·2HO)。在 RT 或 37°C 下孵育 0 或 4 S/TP 不会影响 o-Pi 浓度超过 47 小时。添加硫化物也会增加建筑材料腐蚀的风险,并降低沉淀回收磷的效率。使用硫化物溶解生物固体中的 o-Pi 作为一种潜在的磷回收方法存在缺点。