School of Civil and Environmental Engineering, Cornell University, NY, USA; District of Columbia Water and Sewer Authority, 5000 Overlook Ave. SW, Washington, DC, USA.
School of Civil and Environmental Engineering, Cornell University, NY, USA.
Sci Total Environ. 2024 Oct 10;946:173560. doi: 10.1016/j.scitotenv.2024.173560. Epub 2024 May 31.
Class A biosolids from water resource recovery facilities (WRRFs) are increasingly used as sustainable alternatives to synthetic fertilizers. However, the high phosphorus to nitrogen ratio in biosolids leads to a potential accumulation of phosphorus after repeated land applications. Extracting vivianite, an FeP mineral, prior to the final dewatering step in the biosolids treatment can reduce the P content in the resulting class A biosolids and achieve a P:N ratio closer to the 1:2 of synthetic fertilizers. Using ICP-MS, IC, UV-Vis colorimetric methods, Mössbauer spectroscopy, and SEM-EDX, a full-scale characterization of vivianite at the Blue Plains Advanced Wastewater Treatment Plant (AWTTP) was surveyed throughout the biosolids treatment train. Results showed that the vivianite-bound phosphorus in primary sludge thickening, before pre-dewatering, after thermal hydrolysis, and after anaerobic digestion corresponded to 8 %, 52 %, 40 %, and 49 % of the total phosphorus in the treatment influent. Similarly, the vivianite-bound iron concentration also corresponded to 8 %, 52 %, 40 %, and 49 % of the total iron present (from FeCl dosing), because the molar ratio between total iron and total incoming phosphorus was 1.5:1, which is the same stoichiometry of vivianite. Based on current P:N levels in the Class A biosolids at Blue Plains, a vivianite recovery target of 40 % to ideally 70 % is required in locations with high vivianite content to reach a P:N ratio in the resulting class A biosolid that matches synthetic fertilizers of 1:1.3 to 1:2, respectively. A financial analysis on recycling iron from the recovered vivianite had estimated that 14-25 % of Blue Plain's annual FeCl demand can potentially be met. Additionally, model simulations with Visual Minteq were used to evaluate the pre-treatment options that maximize vivianite recovery at different solids treatment train locations.
从水资源回收设施(WRRFs)中提取的 A 类生物固体作为合成肥料的可持续替代品,其使用越来越多。然而,生物固体中的高磷与氮比例导致在重复土地应用后磷的潜在积累。在生物固体处理的最终脱水步骤之前,提取蓝铁矿(FeP 矿物)可以减少最终 A 类生物固体中的磷含量,并使 P:N 比更接近合成肥料的 1:2。使用 ICP-MS、IC、UV-Vis 比色法、Mössbauer 光谱和 SEM-EDX,对布鲁克林蓝调高级废水处理厂(AWTTP)的蓝铁矿进行了全面的特征描述,该研究涵盖了生物固体处理过程的各个阶段。结果表明,在预脱水前的初沉污泥浓缩、热水解后和厌氧消化后的磷,分别对应于处理进水总磷的 8%、52%、40%和 49%。同样,蓝铁矿结合铁浓度也对应于总铁(来自 FeCl 投加)的 8%、52%、40%和 49%,因为总铁与总输入磷之间的摩尔比为 1.5:1,这与蓝铁矿的化学计量相同。根据布鲁克林蓝调 A 类生物固体目前的 P:N 水平,如果在蓝铁矿含量高的地方,要达到与合成肥料的 P:N 比分别为 1:1.3 至 1:2 相匹配的目标,需要回收 40%至理想的 70%的蓝铁矿。对从回收的蓝铁矿中回收铁进行的财务分析估计,14-25%的布鲁克林蓝调年度 FeCl 需求可能可以得到满足。此外,还使用 Visual Minteq 进行模型模拟,以评估在不同固体处理过程中的最佳预处理选项,以最大限度地回收蓝铁矿。