Suppr超能文献

在碳排放约束下提高钢铁行业能源效率的途径:使用 EBM、NCA 和 QCA 方法。

Pathways to improve energy efficiency under carbon emission constraints in iron and steel industry: Using EBM, NCA and QCA approaches.

机构信息

School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China; The Institute of Low Carbon Operations Strategy for Beijing Enterprises, University of Science and Technology Beijing, Beijing 100083, China.

School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China.

出版信息

J Environ Manage. 2023 Dec 15;348:119206. doi: 10.1016/j.jenvman.2023.119206. Epub 2023 Oct 26.

Abstract

Improving environmental performance of energy- and carbon-intensive sectors represented by the iron and steel (IS) industry is of utmost importance to address the challenges of resource depletion and climate change worldwide. This article adopts a global-super-Epsilon-Based Measure (EBM) model with undesirable output for IS energy efficiency estimation, identifies efficiency determinants based on Technology-Organization-Environment (TOE) framework, and analyzes various pathways for efficiency improvement by grouping Necessary Condition Analysis (NCA) and fuzzy-set Qualitative Comparative Analysis (fsQCA). Empirical testing using statistical data of the G20 economies during 2010-2020 demonstrates that: 1) energy efficiency in the IS industry in G20 countries has risen amidst fluctuations, with developed countries performing more efficiently than developing countries; 2) individual factors do not constitute a compulsory condition to achieve high energy efficiency in the IS industry; 3) three different paths to achieve high energy performance are found, that is, technology-structure driven, regulation-economy-technology driven, and regulation-technology-production driven. Heterogenous policy recommendations for efficiency gains in the IS sector of different countries with divergent features are proposed accordingly.

摘要

提高以钢铁行业为代表的能源和碳密集型部门的环境绩效,对于应对全球资源枯竭和气候变化的挑战至关重要。本文采用全球超ε-基于衡量(EBM)模型和不良产出,对钢铁行业能源效率进行估计,根据技术-组织-环境(TOE)框架确定效率决定因素,并通过对必要条件分析(NCA)和模糊集定性比较分析(fsQCA)进行分组,分析提高效率的各种途径。利用 2010-2020 年 G20 经济体的统计数据进行实证检验表明:1)G20 国家钢铁行业能源效率在波动中上升,发达国家的效率高于发展中国家;2)个别因素不是实现钢铁行业高能源效率的强制性条件;3)发现了三种实现高能效的不同途径,即技术-结构驱动、规制-经济-技术驱动和规制-技术-生产驱动。因此,针对不同特征的国家的钢铁行业提出了具有异质性的提高效率的政策建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验