Suppr超能文献

用于随机网络3D打印机械超材料尺寸无关逆设计的深度学习

Deep Learning for Size-Agnostic Inverse Design of Random-Network 3D Printed Mechanical Metamaterials.

作者信息

Pahlavani Helda, Tsifoutis-Kazolis Kostas, Saldivar Mauricio C, Mody Prerak, Zhou Jie, Mirzaali Mohammad J, Zadpoor Amir A

机构信息

Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands.

Division of Image Processing (LKEB), Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, Leiden, 2333 ZA, The Netherlands.

出版信息

Adv Mater. 2024 Feb;36(6):e2303481. doi: 10.1002/adma.202303481. Epub 2023 Dec 14.

Abstract

Practical applications of mechanical metamaterials often involve solving inverse problems aimed at finding microarchitectures that give rise to certain properties. The limited resolution of additive manufacturing techniques often requires solving such inverse problems for specific specimen sizes. Moreover, the candidate microarchitectures should be resistant to fatigue and fracture. Such a multi-objective inverse design problem is formidably difficult to solve but its solution is the key to real-world applications of mechanical metamaterials. Here, a modular approach titled "Deep-DRAM" that combines four decoupled models is proposed, including two deep learning (DL) models, a deep generative model based on conditional variational autoencoders, and direct finite element (FE) simulations. Deep-DRAM integrates these models into a framework capable of finding many solutions to the posed multi-objective inverse design problem based on random-network unit cells. Using an extensive set of simulations as well as experiments performed on 3D printed specimens, it is demonstrate that: 1) the predictions of the DL models are in agreement with FE simulations and experimental observations, 2) an enlarged envelope of achievable elastic properties (e.g., rare combinations of double auxeticity and high stiffness) is realized using the proposed approach, and 3) Deep-DRAM can provide many solutions to the considered multi-objective inverse design problem.

摘要

机械超材料的实际应用通常涉及解决反问题,旨在找到能产生特定性能的微结构。增材制造技术的有限分辨率常常要求针对特定的试样尺寸解决此类反问题。此外,候选微结构应具有抗疲劳和抗断裂性能。这样一个多目标反设计问题极难解决,但其解决方案是机械超材料实际应用的关键。在此,提出了一种名为“深度DRAM”的模块化方法,该方法结合了四个解耦模型,包括两个深度学习(DL)模型、一个基于条件变分自编码器的深度生成模型以及直接有限元(FE)模拟。深度DRAM将这些模型集成到一个框架中,该框架能够基于随机网络晶胞找到所提出的多目标反设计问题的许多解决方案。通过大量的模拟以及在3D打印试样上进行的实验表明:1)DL模型的预测与FE模拟和实验观测结果一致;2)使用所提出的方法实现了可实现弹性性能的扩大范围(例如,双负泊松比和高刚度的罕见组合);3)深度DRAM可以为所考虑的多目标反设计问题提供许多解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验