Wang Chenxiang, Zhu Jason Zi Jie, Vi-Tang Samantha, Peng Bosi, Ni Chenhao, Li Qizhou, Chang Xueying, Huang Ailun, Yang Zhiyin, Savage Ethan J, Uemura Sophia, Katsuyama Yuto, El-Kady Maher F, Kaner Richard B
Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
Adv Mater. 2024 Jan;36(3):e2306145. doi: 10.1002/adma.202306145. Epub 2023 Dec 1.
Rechargeability in zinc (Zn) batteries is limited by anode irreversibility. The practical lean electrolytes exacerbate the issue, compromising the cost benefits of zinc batteries for large-scale energy storage. In this study, a zinc-coordinated interphase is developed to avoid chemical corrosion and stabilize zinc anodes. The interphase promotes Zn ions to selectively bind with histidine and carboxylate ligands, creating a coordination environment with high affinity and fast diffusion due to thermodynamic stability and kinetic lability. Experiments and simulations indicate that interphase regulates dendrite-free electrodeposition and reduces side reactions. Implementing such labile coordination interphase results in increased cycling at 20 mA cm and high reversibility of dendrite-free zinc plating/stripping for over 200 hours. A Zn||LiMn O cell with 74.7 mWh g energy density and 99.7% Coulombic efficiency after 500 cycles realized enhanced reversibility using the labile coordination interphase. A lean-electrolyte full cell using only 10 µL mAh electrolyte is also demonstrated with an elongated lifespan of 100 cycles, five times longer than bare Zn anodes. The cell offers a higher energy density than most existing aqueous batteries. This study presents a proof-of-concept design for low-electrolyte, high-energy-density batteries by modulating coordination interphases on Zn anodes.
锌(Zn)电池的可充电性受到阳极不可逆性的限制。实际使用的贫电解质加剧了这一问题,损害了锌电池用于大规模储能的成本效益。在本研究中,开发了一种锌配位界面来避免化学腐蚀并稳定锌阳极。该界面促进锌离子与组氨酸和羧酸盐配体选择性结合,由于热力学稳定性和动力学活性,形成具有高亲和力和快速扩散的配位环境。实验和模拟表明,该界面可调节无枝晶电沉积并减少副反应。采用这种活性配位界面可使电池在20 mA cm下的循环次数增加,并且无枝晶锌电镀/剥离的高可逆性可持续超过200小时。一个Zn||LiMn₂O₄电池在500次循环后实现了74.7 mWh g的能量密度和99.7%的库仑效率,使用活性配位界面提高了可逆性。还展示了一种仅使用10 µL mAh电解质的贫电解质全电池,其循环寿命延长至100次,比裸露的锌阳极长五倍。该电池的能量密度高于大多数现有的水系电池。本研究通过调节锌阳极上的配位界面,提出了一种低电解质、高能量密度电池的概念验证设计。